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1 Introduction

Suppose that the heads of the Fortune 500 companies agree to cooperate in a comprehensive study
of their collective financial health. The study might consist of statistical functions that combine
existing raw data from each company, e.g., “the sum of 1993 net earnings of all 500 companies,”
or “the standard deviation of the average change in net profits over successive quarters” or “the
average percentage of gross earnings spent on cryptographic research.” Further suppose that,
although all companies wish to know the results of this study, none is willing to risk the exposure
of its individual financial data in the process. If an independent trusted agent is available (e.g.,
Price-Waterhouse), the problem is easy. Each company gives its raw data to the trusted agent,
who computes the statistics on everyone’s behalf. In the absence of an independent trusted agent,
however, can these titans of industry still achieve their goal?

They can. Secure distributed computing (or “fault-tolerant distributed computing,” or “oblivi-
ous circuit evaluation”) is the problem of evaluating a function (or, equivalently, a circuit) to which
each player has one secret input, such that the output becomes commonly known while the inputs
remain secret. The problem would be trivial in the presence of a trusted agent. All players give
their private inputs to the agent, who computes the function and distributes the output. The
task of protocols for secure distributed computation can be considered to be the simulation of the
presence of a trusted agent by a group of players who are mutually untrustworthy.

Of course, untrustworthiness, for cryptographers, is a many-flavored thing. It might mean that
all parties behave perfectly during the protocol, but later some group of gossippers compare notes
to try to learn everyone else’s secrets. A stronger meaning might be that some fixed fraction of
the parties cheat during the protocol, but in such a way that the outcome (i.e., the value of the
function) remains the same. Even stronger would be if some fixed fraction of the parties cheated
arbitrarily during the protocol; yet stronger adversarial behavior can be imagined.

In this paper, we will see solutions to the Fortune 500 problem (or any other computational
problem) that assume nothing more than that each company trusts that there are at least 333
other companies that will not betray it (plus secure phone lines). Other solutions show that if
conference-calling is also allowed, then each company need only assume that 250 other companies
are honest. Still other solutions need only assume that the Chief Number Theorist of each company
certifies that certain problems (such as quadratic residuosity) will remain intractable for as long as
its financial information remains sensitive.



Results in the field can be divided into two main categories: protocols and complexity results.
Protocols can be divided into two main categories: cryptographic and non-cryptographic. Cryp-
tographic protocols can be divided into two main categories: two-party protocols and multi-party
protocols. These are the lines along which the bulk of this paper is organized.

1.1 Historical Background

Secure distributed computing is a very general and powerful notion. It was preceded by numerous
investigations of protocols for a variety of special-purpose (and interrelated) cryptographic tasks.
Secret sharing [88] [90] is a multi-party protocol in which a designated player distributes a message
for later recovery by some authorized subcollection of the remaining players; it is discussed in more
detail in Section 2.1.6. Bit commitment, a two-player version of secret sharing, is discussed in
Section 2.1.4. Coin flipping [23] is a two-party protocol that arrives at a common random bit; this
was one of the earliest cryptographic protocols. Mental poker [89] [75] [43] [60] [96] [53] [44] [45]
is a protocol for producing, and partially applying, a random permutation (i.e., shuffle and deal a
deck of cards); as evidenced by the number of references, this problem was something of a critical
test case for the cryptography community as the notion of security grew in sophistication over the
years. Oblivious Transfer [23] [21] [29] is a fundamental two-party protocol that transfers a bit with
uncertainty; it is discussed in more detail in Section 2.2.2. Secret exchange [25] [27] [76] [64] [95]
is a two-party protocol that transfers a message in each direction with certainty; it is discussed in
more detail in Section 2.4.4. Electronic money [32] [33] is a collection of protocols (e.g, withdrawal,
purchase, deposit) that implement payment schemes without any physical requirements. Secret-
ballot election schemes [42] [18] [65] are essentially a special case of secure computation in which
the function is a simple sum of ones and zeros.

Early work in the formalization of cryptographic protocols is also of interest. One approach is
algebraic [49] [77], proving security by relating actual protocols homomorphically to theoretically
perfect protocols. A second approach is logical [31], proving security with respect to some reasonable
axiomatization.

Lastly, we mention some general notions that are related to secure distributed computing.
Instance-hiding schemes [1] [11] involve a weak computational agent exploiting one or more strong
but untrusted computational agents to compute a function for secret inputs. When one player
has a secret circuit and the other player has non-secret data (or vice versa), then the problem
of secure distributed computing reduces to a “minimum-knowledge” (or “zero-knowledge”) circuit
simulation, solved in the general case by [56], and later improved by [69]. More will be said about
zero-knowledge protocols in Section 2.1.5.

1.2 Organization of the Paper

The next section gives short descriptions of cryptographic and other primitives that are used in
the upcoming protocols. Section 3 presents one model for secure distributed computation, as
well as pointing out where “competing” models differ. Two-party cryptographic protocols are
presented in Section 4, multi-party cryptographic protocols in Section 5, and multi-party non-
cryptographic (sometimes called “unconditional”) protocols in Section 6. Section 7 presents some
of the complexity results and lower bounds that are known for these protocols, and Section 8 closes
with some discussion and open questions.



2 Preliminaries

In this section, we give short overviews of cryptographic and distributed computing primitives
that will be used in upcoming protocols: number theory basics, indistinguishable probability dis-
tributions, one-way functions, trapdoor functions, encryption, bit commitment, interactive and
zero-knowledge proof systems, secret sharing, and instance hiding.

2.1 Number Theory Basics

In this subsection, we briefly review two common intractability assumptions upon which crypto-
graphic security have been based: the Quadratic Residuosity Assumption and the Discrete Loga-
rithm Assumption.

A quantity is “negligible” if it is smaller than the reciprocal of any polynomial of relevant
parameters, and otherwise “non-negligible.” When this term is used, the relevant parameters will
usually not be stated explicitly. Negligibility can be used to formalize the “hardness” of a problem,
a typical assumption made in cryptographic protocols.

Let n be the product of two primes p and ¢, each congruent to 3 modulo 4. Let a be an
integer between 0 and n — 1. Define QRP,(a) to be 0 if a is a square mod n, and 1 otherwise.
The Quadratic Residuosity Assumption (QRA) states that no probabilistic polynomial-time
Turing Machine can, on input n and a, output Q RP,(a) non-negligibly better than random guessing
(i-e., bounded above % by the reciprocal of a polynomial of the size of n). However, there is an
efficient algorithm for computing Q RP,(a) if the factorization of n is known.

Let p be a prime, let g be a generator of Z,* (i.e., Z,* = {g'|i € Z,*}), and let a be an integer
between 0 and p — 1. Define DLP, 4(a) to be ¢ such that g' =z mod p, 0 < i< p. The Discrete
Log Assumption (DLA) states that no probabilistic polynomial-time Turing Machine, can, on
input p, g, and a, output DL P, ;(a) non-negligibly better than random guessing.

The quadratic residuosity function and the discrete logarithm function each has a property,
“random self-reducibility,” that will be used often in protocols described in this paper. Informally,
a function has this property if it can be computed at any input from its value at “random-looking”
inputs. More formally, f is random self-reducible if there are polynomial-time functions ¢ and
o1, ,0r such that (1) if r is chosen uniformly at random from dom(f) then each o;(z,r) is
uniformly distributed over dom(f) for every ¢ € dom(f), and
(2) f(z) = o(z,r, f(o1(z,7)), -, f(or(z,7))) for all z,r € dom(f). The function @R, is random
self-reducible over Z} (for any n), since (1) zr mod n is a uniformly distributed element of Z}
whenever 7 is chosen at random from Z} and (2) QR.(z) = QR,(zr mod n) & QR,(r). The
function DLP, 4(a) is random self-reducible over Z} since (1) ag” mod p is uniformly distributed
for random r € Z; and (2) DLP, 4(a) = DLP, 4(ag™ mod p) — r.

2.2 Indistinguishable Probability Distributions

The indistinguishability of probability distributions, due to Yao [94] and Goldwasser and Micali [60],
combines computational assumptions with randomness in a condition that is useful for defining the
security of cryptographic primitives. Informally, two distributions are indistinguishable if a guesser
cannot tell them apart. This condition will be used in later subsections to define probabilistic
encryption, bit commitment, and zero-knowledge proof systems.



Indistinguishability is formalized through the notion of a “distinguisher,” which is a probabilistic
algorithm that outputs a boolean value when given one or more elements of a distribution as input.
If the distinguisher is run twice, on inputs drawn from each distribution, then the distinguisher is
“successful” if the two outputs differ.

Let P and @) be probability distributions on k-bit strings. They are distinguishable by D if
there is a constant ¢ > 0 such that

prob(D(z) # D(y)|z + Py« Q) > - + é

N | =

[The notation z < P indicates that z is drawn from the distribution P.]

For technical reasons, indistinguishability is defined on famailies of distributions. A “family” of
distributions is an indexed collection { P } of probability distributions, where P is a distribution on
k-bit strings. Two families of distributions { Py} and {Q} are “computationally indistinguishable”
if, for every D which runs in time polynomial in k, there is a constant K > 0 such that P, and
Q) are not distinguishable by D for all £ > K. For example, the QRA implies that, for n of the
proper form, the families of distributions of quadratic residues modulo n and quadratic nonresidues
modulo n are computationally indistinguishable.

Indistinguishability can be generalized to apply to “ensembles” of probability distributions. An
ensemble is a family of parametrized collections of probability distributions, i.e., {Px(z)}, where
Pyr(z) is a distribution on k-bit strings for each choice of z € Ly (parameter set) and each choice
of k. Fixing a different z from each parameter set Lj “collapses” an ensemble into a family of
distributions. Two ensembles are said to be computationally indistinguishable if, no matter how
each is collapsed, the corresponding families of distributions are computationally indistinguishable.

Notice that there is a natural ensemble {My(z)} associated with each probabilistic Turing
Machine M and language L: My/(z) is the distribution of outputs of M on input z € L of length k.
This will be useful in the upcoming definition of zero-knowledge proof systems.

2.3 Trapdoor Functions and Encryption Schemes

A function is “one-way” if it is easy to compute and hard to invert. More formally, suppose that
{fx} is a family of functions defined on bit strings, where f; : {0,1}* — {0,1}*. The family {f}
is one-way if two requirements are satisfied: (a) there is a deterministic polynomial-time (in k)
algorithm to compute each fi; and (b) for every probabilistic polynomial-time algorithm A and for
every c there exists a k. such that

prob(fu(A(fu(2))) = fu(e)lz « {0,1}%) < &~

for all £ > k.. The existence of one-way functions implies P # N P, so it should not be surprising
that no definitive examples of such functions have been found; the discrete log functions from
Section 2.1.1 is an example of a candidate that is widely believed to be one-way.

A family of one-way functions is “trapdoor” if there exists some secret information (called
the “trapdoor information” or “trapdoor key”) for each function with which the inverse can be
computed (with high probability) in probabilistic polynomial time. More formally, the trapdoor
function E and the inverting function D can be considered to be the output of a randomized
algorithm K that takes as input a security parameter k. The probability that D(E(z)) # « should



be negligible, and, for any p.p.t. algorithm A, the probability that A(E(z)) = & should be less
than 2% (where the probability ranges over the choice of ).

A trapdoor permutation (i.e., a trapdoor function that is a bijection) can be the basis for a
public-key encryption scheme. The permutation is made public, while the trapdoor key is kept
secret. Anyone can encrypt a message by applying the permutation to it, but only the holder of
the trapdoor key can invert the permutation to recover the message. No permutation is known to
be trapdoor, but one candidate is the RSA encryption function [87]: E(m) = m® mod n, where
n = pq, and the trapdoor key is (p, g) (easily samplable given the family parameter £ = |p| = |q|).
The inverse permutation is D(m) = m® mod n, where ed = 1 mod (p — 1)(¢ — 1), which can be
efficiently found from the trapdoor key.

Notice that repeated public-key encryption of the same message always yields the same result,
i.e., some information about a message is always revealed to an eavesdropper. This leakage is
eliminated by using Goldwasser and Micali’s “probabilistic public-key encryption” [60], of which
the following is an example. If n is a product of two primes each congruent to 3 modulo 4, and if the
Quadratic Residuosity Assumption holds, then the inverse of QRP,(-) is a one-to-many trapdoor
function, where the factorization of n is the trapdoor key. Anyone can send a bit stream as a
sequence of squares (encrypted 0’s) and nonsquares (encrypted 1’s) modulo n.

What makes this a probabilistic encryption scheme is that there are exponentially many ways
to encrypt each bit (as a function of the length of the trapdoor key), and that these possible
encryptions are easy to generate at random. If n is the product of two primes that are congruent
to 3 modulo 4, and a is a random integer, then a? is a random quadratic residue (square) mod n,
and —a? is a random quadratic nonresidue (nonsquare) mod n. The QRA can be shown to imply
the computational indistinguishability of the distribution of encrypted zeros and the distribution
of encrypted ones, which in turn implies the computational indistinguishability of the distributions
of encryptions of any two messages. Thus no partial information about the message is available
(under the QRA) to a probabilistic polynomial-time eavesdropper.

2.4 Bit Commitment

There are two nice properties of a sealable opaque envelope. One is that its contents cannot be
changed once the envelope has been sealed (unalterability). The second is that, once sealed, its
contents cannot be seen until it is opened (unreadability). A bit commitment scheme is a tool that
simulates at least these two properties of opaque envelopes.

A bit commitment scheme can be considered to be a mapping from some large domain to {0, 1};
a bit is committed by giving a random element in the pre-image of the mapping at that output
value. The scheme is unalterable if the mapping is in fact a function. The scheme is unreadable
if the distributions of elements in the pre-image of zero and elements in the pre-image of one are
indistinguishable to the receiver.

The first bit commitment protocol was part of a protocol by Blum [24] for two-party coin flipping.
A commitment by one party, followed by a guess by the second party, followed by a revelation by
the first party, is equivalent to the flip of a coin. Naor [79] shows a general construction for basing
bit commitment on any one-way function, based on earlier reductions [66] [63].

A more specific example of a bit commitment scheme is based on quadratic residuosity. If
n = pq, p = ¢ = 3 mod 4, then a bit is committed by sending a quadratic residue modulo n (for a
zero) or a quadratic nonresidue modulo n (for a one). The scheme is unalterable, since no element



can be both a residue and a nonresidue; the scheme is unreadable by a polynomially bounded
receiver under the QRA.

Basic bit commitment requires that the receiver be polynomially-bounded. Another flavor of
bit commitment, called “strong bit commitment” [28] [30] [80] allows the receiver to be unbounded.
In this case, unreadability requires that the two probability distributions be (almost) identical.

2.5 Interactive Proof Systems and Zero-Knowledge Proof

An interactive proof system is a two-party protocol in which a “prover” conveys a convincing argu-
ment to a polynomially-bounded probabilistic “verifier;” this idea was introduced by Goldwasser,
Micali, and Rackoff [61] and Babai [3]. More precisely, given a language L, an interactive proof
system for L consists of two probabilistic interactive machines called the prover and the verifier
that have access to a common input tape containing a possible element = of L, and that send
messages through a pair of communication tapes, but otherwise are inaccessible to one another.
The verifier performs a number of steps polynomial in the length of the common input, ending in
either an “accept” or a “reject” state. When the verifier behaves correctly, then (1) when z € L,
the probability that the verifier rejects is less than any reciprocal polynomial in the length of ; and
(2) when z ¢ L, the probability that the verifier accepts is also less than any reciprocal polynomial
in the length of z, even when the prover behaves in an arbitrarily adversarial manner.

An interactive proof system for a language L is “computational zero-knowledge” [61] if the
verifier learns nothing from the interaction except the validity of the proof, even if the verifier
behaves in an arbitrarily adversarial (probabilistic polynomial-time) manner. This vague condition
can be formalized in terms of the computational indistinguishability of ensembles of probability
distributions. Consider the probability distribution generated by an adversarial verifier, called its
“view,” which covers everything seen by the verifier during an interactive proof: messages from
and to the prover, plus verifier’s coin tosses. For each adversarial verifier, there is an ensemble
Viewg(z) of such distributions, parameterized over all z € L of length k. A proof system for
membership in L is zero-knowledge if the view ensemble of any adversary V* is computationally
indistinguishable from the natural ensemble associated with L and some probabilistic polynomial
time Turing Machine My« (called the “simulator” for V'*).

A common technique for the zero-knowledge proof of a proposition is a “cut-and-choose” pro-
cedure. The proposition is “scrambled” in some way and presented to the verifier. The verifier
challenges the prover to either (a) prove the scrambled proposition, or (b) prove that the scrambled
proposition is true if and only if the original proposition is true. Either (a) or (b) alone should
reveal nothing to the verifier about the proof of the original proposition; cheating by the prover
is caught at least half the time. By iterating this procedure, exponentially high confidence can be
achieved by the verifier after a linear number of challenges.

As an example of a cut-and-choose procedure, consider the following sketch of a zero-knowledge
proof system for Hamiltonicity [26]. A Hamiltonian cycle in a graph is a set of edges that connects
all vertices in a simple (non-self-intersecting) loop. Suppose that the prover wishes to convince
the verifier that a graph G with n nodes has a Hamiltonian cycle. The prover takes the adjacency
matrix for G (an n by n binary matrix whose (¢, ) entry is 1 if there is an edge from node % to
node j and zero otherwise), randomly permutes the rows, randomly permutes the columns, and
replaces each bit with a commitment for that bit. This scrambled adjacency matrix is sent to the
verifier, who responds with one of two challenges: either (a) require the prover to open only those



n bit commitments that correspond to the Hamiltonian cycle, or (b) require the prover to open all
bit commitments and properly reorder the rows and columns.

The main importance of zero-knowledge proof systems to secure distributed computation arises
from the fact that every language in NP has a zero-knowledge proof system under the assumption
that a one-way function exists (first shown by Goldreich, Micali and Wigderson [56] under the
assumption that trapdoor permutations exist). In particular, the set of correct messages that can
be sent by any player at any moment under any protocol is a language in NP. Thus every message
that is sent in a protocol can be accompanied by a zero-knowledge proof that it is an appropriate
message. In this way, the encrypted messages of any cryptographic protocol can be “validated
via zero-knowledge proof,” which can protect against faulty players that might try to violate the
protocol. The use of validation in secure distributed computation protocol will be seen in Sections
2.4.3 and 2.5.3. We also mention zero-knowledge proof of knowledge [51] [91], in which the verifier
is convinced that the prover holds an undisclosed witness for language membership; these proof
systems are also important in the context of protocol validation.

2.6 Secret Sharing and Verifiable Secret Sharing

Underlying many recent results in secure distributed computing is a secret sharing scheme due to
Shamir [88]. In this scheme, a secret s is shared by a “dealer” among n players by giving each
player a point on an otherwise random degree ¢ polynomial p(z) such that p(0) = s (e.g., give p(¢)
to the ith player). Any ¢+ 1 players can interpolate to recover p(z) and hence s. If all computation
is performed over a finite field, then the secret is secure from any group of up to ¢ players in the
strongest possible (information-theoretic) sense. The parameter ¢ is called the “threshold” of the
secret sharing scheme.

When a secret s is shared among n players using a scheme with threshold ¢, then the piece
given by the dealer to a single player may be called a “t-share” of s. Notice that this protocol has
two phases. The dealer distributes t-shares during a “sharing phase,” and the players interpolate
to recover the secret during a “recovery phase.”

Verifiable secret sharing (VSS), first introduced by Chor, Goldwasser, Micali, and Awerbuch [38],
is a form of secret sharing in which cheating by the dealer and some of the players cannot prevent
the honest players from receiving valid shares of some unique recoverable secret. More formally,
a t-VSS scheme has three properties: (1) If the dealer is honest, then the secret is information-
theoretically secure during the sharing phase from any group of up to t players; (2) The value
that will be recovered by the honest players during the recovery phase is uniquely determined at
the end of the sharing phase; and (3) If the dealer is honest during the sharing phase, then the
recovered value will be the dealer’s actual secret. This primitive is also used extensively in the
secure computation protocols given in this paper.

To illustrate the idea, we describe a VSS scheme due to Ben-Or, Goldwasser, and Wigderson [20]
that can correct up to t player errors, with no probability of errors, if n > 3¢t. The dealer chooses
a degree ¢ polynomial p(z,y) in two variables ¢ and y, such that the secret s = p(0,0). Instead of
sending single values to other players, each player i receives from the dealer two degree t polynomials
in one variable, derived from p(z,y): e.g., player i receives primary shares f;(y) = p(¢,y) and
5i(z) = p(, ).

Upon receiving two univariate polynomials f;(y) and g;(z), each player ¢ does a secondary share
with each player j: e.g., ¢ sends to j the single secondary share value s;; = f;(5). Notice that if



both the dealer and player ¢ are honest then s;; = g;(¢) as well.

Dishonesty by either the dealer or other players will cause inconsistencies among the primary
and secondary shares received by the honest players. For each inconsistency, a challenge is made
to the dealer to send to all players some relevant share information. If the inconsistencies convince
a player that the dealer is cheating, then the challenge is accompanied by an “accusation” of the
dealer. For example, if f;(¢) # gi(%), then player ¢ accuses the dealer of cheating, and challenges
the dealer to send f;(z) and g;(z) to all players. Similarly, if g;(j) # sj for more than ¢ j’s, then ¢
accuses the dealer of cheating, and challenges the dealer to reveal ¢’s primary shares. If g;(j) # s;;
for between 1 and ¢ j’s, then the dealer is not accused (the secondary sharers may be cheating);
however, the dealer is challenged by ¢ to send the suspicious secondary shares (sj;’s) to all players.

As the dealer responds to challenges, more inconsistencies will be revealed, causing more ac-
cusations and challenges to be made. After a constant number of iterations, either the dealer is
repudiated (more than ¢ players have accused the dealer of cheating, or the dealer is upheld (at
most ¢ accusations have been made). If the dealer is repudiated, then some default value is chosen
for its secret (e.g., s = 0), and some default share value is chosen by each player (e.g., s; = 7). If the
dealer is upheld then ¢ takes its share to be f;(0), where f;(z) is either from the original primary
share (if ¢ never accused the dealer of cheating) or from the revealed primary share (if the dealer
responded to an accusation by ¢ of cheating).

In later sections, this VSS scheme will be used in secure computation protocols, as will a VSS
scheme due to T. Rabin [85] that can tolerate any minority of faulty players with an exponentially
small probability of error.

2.7 Instance Hiding

Instance hiding schemes ([1], [11]) are a means for computing with encrypted data. Assume that a
computationally weak player wishes to compute a complicated function with the help of powerful
but untrusted players (called “oracles”). The idea is for the weak player to ask questions of the
powerful players from which the desired answer can be easily computed, but in such a way that
sufficiently small subsets of the powerful players cannot determine anything about your intended
computation from those questions. Every function has a multiple oracle instance hiding scheme
that leaks no information to any single oracle [11] (but which allows any two oracles to determine
the intended computation).

As an example, here is a 1-oracle instance-hiding scheme for computing the discrete logarithm.
To find DLP, 4(a), choose a random i, 0 < i < p, and ask the oracle for DLP, ;(ag’). The oracle
will reply with some j such that g = ag’ mod p, and thus j — % is the desired result. The oracle
learns nothing about the value of a for which the answer was originally sought, since the distribution
of ag® is uniform for any a if i is chosen uniformly. Notice that this instance-hiding scheme relies
on the random self-reducibility of the discrete logarithm function.

Instance hiding may be thought of as a close cousin to secure distributed computation. It
is listed in this section on preliminaries because two interesting protocols for secure distributed
computation are in fact based directly on instance hiding as a primitive [2] [12].



3 Models and Basic Protocols

In this section, the background definitions and concepts are presented for secure distributed com-
puting. Two fundamental protocols are formally described: Oblivious Transfer [?] and Byzantine
Agreement [74]. Some of the difficulties of formalizing security for protocols are discussed, along
with some recent attempts to overcome these difficulties.

3.1 Protocol Definitions

In this subsection, definitions are given for the three fundamental components of a computation
protocol: the parties that participate in the computation, the communication media over which
messages are sent, and the adversaries who attempt to defeat the security of the protocol.

Unless otherwise stated, all computation is assumed to be over some large finite field.

Parties: Each party (or “player” or “processor”) in a protocol is modeled as an “interacting
Turing machine.” Each such machine has a private input tape (read-only), output tape (write-
only), random tape (read-only), and work tape (read-write). All of the machines share a common
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input tape (read-only) and output tape (write-only). In addition, each machine may have a history
tape, on which it may record any computation or commmunication in which it is involved. Other
tapes may be associated with machines or with pairs of machines to model the communication
media available for the protocol; this will be covered shortly.

For most of the protocols discussed in this paper, either n = 2 (“two-party”) or n > 3 (“multi-
party”). The ith processor, 1 < 7 < n, has the secret value s; (usually an element of a finite
field) on its private input tape. A description of the function f(z1,---,z,) (e.g., the encoding of a
circuit that evaluates the function) is on the common input tape. A protocol specifies a program
for each processor, at the end of which each processor has the value f(si,---,s,) on its output
tape. Assume that the programs of the processors coordinate all messages to be sent and received
at the ends of “rounds” (i.e., at the ticks of a global clock, between which all local computation of
all processors is done asynchronously).

If the protocol is “cryptographic,” i.e., if it relies on some unproven intractability assumption,
then the program for each interactive Turing Machine is assumed to run in probabilistic polynomial-
time. Otherwise, the protocol is “non-cryptographic” (or “unconditional”), and there are no bounds
on the running time of the programs. However, for most non-cryptographic protocols described
in this paper, the programs for all players are polynomial-time (two exceptions are Bar-Ilan and
Beaver [5] and Beaver, Feigenbaum, Kilian, and Rogaway [12]).

Some minor variations in the definition of protocol appear in the literature. Two of these
variations are mentioned at this time.

The definition of protocol assumes that each player receives the result of a single computation.
One variation is to assume that there is a separate function for each player, and that the protocol
ends with the output of each function written on the corresponding player’s output tape. This
variation can be seen to be nearly equivalent to the definition presented. Simply augment each
player’s private input by adding a private random value, and have the common output be a tuple
of private output values added to private random values. Then everyone receives all outputs, but
only one of those outputs is recoverable by each player. However, this transformed single-output
version may be more vulnerable than the original to a different kind of attack. If a collection of
players halt the protocol prematurely, they may gain more information about the outputs than the



remaining players. Protocols that can withstand this sort of attack are called “fair;” fairness is
discussed further in Section 2.4.4.

For two-party protocols, the definition assumes that both players know the function, and each
player has a private input. It is equivalent to say that only one player knows the function. Simply
represent the function as a circuit, encode the circuit as a description, and have that circuit de-
scription be an additional input to a universal circuit. This interchangeability of data and function
is a general phenomenon that can be exploited in protocols for secure computation.

Communication Models: In general, players communicate with one another through private
channels or public channels (or both). A message sent through a private channel is inaccessible to
anyone except the designated sender and receiver. A public channel, called a “broadcast” channel,
sends a message to everyone. By labeling a message on a broadcast channel, it may be addressed
to a single receiver, but its contents are accessible to all players.

If a pair of players are connected by a private channel, then the corresponding pair of interactive
Turing Machines share two additional “communication” tapes. Each tape is exclusive-write for one
of the two players (unerasable, with a unidirectional writing head), and is readable by both players.
If there is a broadcast channel, then each interactive Turing Machine has an exclusive-write tape
that is readable by all other players.

The cryptographic protocols typically assume only a broadcast channel (in addition to what-
ever cryptographic assumptions are needed). The non-cryptographic protocols typically assume
a complete (fully connected) network of private channels among the players. Several of the non-
cryptographic protocols assume a broadcast channel as well. Some cryptographic protocols assume
only a complete network of “oblivious transfer channels” (i.e., private channels that allow OT by
some means), and in fact require no additional cryptographic assumptions. Some work has been
done in the unconditional setting with incomplete networks of private channels [86] [48].

Adversaries: A player is considered “correct” if it follows its program exactly, engaging in no
additional communication or computation beyond what is specified by the protocol, and keeping
all of its private tapes private. A player that is not correct is considered “faulty.” To model worst-
case behavior (maximally malicious coordination), the faulty players in a protocol are modeled
as being under the control of a single adversary. In the cryptographic setting, the adversary is a
probabilistic polynomial-time algorithm. In the unconditional setting, the adversary is an algorithm
with no time or space bounds.

A “passive” adversary can read the private internal tapes and received messages of all faulty
processors, but does not interfere with the programs of the faulty processors. This models the
situation in which a group of dishonest players participate in the protocol properly, and afterwards
pool their information in an attempt to learn more about the inputs of the honest players.

An “active” adversary can read private tapes and messages of faulty players, and can also specify
the messages that are sent by faulty players. In other words, an active adversary can cause the
faulty processors to violate the protocol in an arbitrary coordinated attack. An active adversary
is “rushing” if it can read all messages sent to the faulty players in a round before deciding on the
messages sent by those faulty players in that same round.

An adversary can also be either “static” or “dynamic.” A static adversary controls the same
set of faulty players throughout the protocol. A dynamic adversary can increase the set of faulty
players under its control each round. Even within a single round, faulty players may be added
dynamically, on the basis of messages and internal tapes of those players that have already been
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corrupted.

Other types of adversaries are seen less frequently in the secure distributed computing literature.
Fail-stop adversaries [55] are active adversaries that are limited to withholding outgoing messages
from a faulty processor. Independent adversaries [48] are two or more adversaries (e.g., one or more
passive and one or more active) for a single protocol, which control possibly overlapping sets of
faulty processors, and which possibly cannot communicate during the course of the protocol.

For most of the protocols discussed in this paper (but not all [83] [48]), there is either a single
static passive adversary or a single static active adversary.

3.2 Basic Protocols

This section describes two basic protocols that are useful primitives for secure distributed compu-
tation: Oblivious Transfer and Byzantine Agreement.

Oblivious Transfer: Suppose that player A has a secret bit b that is unknown to player B. The
two players engage in a protocol, at the end of which player B successfully receives bit b with
probability % B always knows with certainty whether or not the “transfer” of bit b6 was successful.
By contrast, A cannot determine that the transfer was successful any better than random guessing
(or non-negligibly better than random guessing, with respect to some security parameter). This is
a description of the simplest version of Oblivious Transfer, due to Rabin [?] (abbreviated “OT”). It
is analogous to mail service by an incompetent Postal Service; any sent letter arrives at the proper
destination half of the time, and disappears the other half of the time.

The input-output requirements of this simple Oblivious Transfer protocol can be described in the
secure computation model given earlier in this section. Player A begins with the private input (b, ),
where b is the secret bit, and where r is a private random bit. Player B begins with the private input
(m, 7}, ), where all three components are random bits. At the end of the protocol, each player has
the output value f((b,r), (m,r],r5)) on its output tape, where f((b,r), (m,r],r5)) = (m @ b, ) if
r=ri,and = (m, 1@ ry) if r £ r}.

There are many other types of Oblivious Transfer that have all been shown to be equivalent
to the simple one [29] [46] [47]. One important alternative is called “1-2 Oblivious Transfer” [50]
(abbreviated “1-2-OT”). In this version, player A begins with two secret bits by and b,. Player B
can choose to receive exactly one of these bits, without letting A know which bit was chosen.

Oblivious Transfer is one of the most basic possible primitives that can break the “knowledge
symmetry” between two players. In addition to other versions of Oblivious Transfer, more sophis-
ticated protocols can be built from this primitive. In fact, secure distributed computation can be
reduced to Oblivious Transfer [70] [13] [59], as will be discussed in later sections. To give a sim-
pler reduction now, the following scheme, due to Crépeau [46], achieves bit commitment through
oblivious transfer:

1. Player A chooses random by, - - -, b,, such that b; @ ---® b,, = b.

2. Player A sends each b;, in order, to player B by oblivious transfer. At this point, player A
has committed to bit b.

To reveal the committed bit b, player A sends each b;, in order, to player B without using obliv-
ious transfer. Player B rejects the commitment if any b; disagrees with a b; that was successfully
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received earlier, and accepts b = b1 @ - - - P b,, otherwise. The probability of A cheating B is at most
%, and can be reduced to 2% by parallel k-wise execution of the basic protocol.

These Oblivious Transfer primitives, and especially 1-2-OT, will be used frequently in the
computation protocols discussed in this paper.

Byzantine Agreement: Suppose that there are n players, each player ¢ has a single bit b;, and
some of the players are unreliable. The Byzantine Agreement problem is to devise a protocol at the
end of which all of the non-faulty players agree on a bit b (called the “consensus value”). Moreover,
we must have that b = b; if ¢ is honest and all of the honest players had the same initial bit. This
problem was initially considered by Lamport, Shostak, and Pease [74], who showed that it can be
solved if and only if less than one-third of the players are faulty. As will be shown in the next
subsection, Byzantine Agreement can be used to eliminate the need for a broadcast channel in
some secure distributed computation protocols.

This protocol can also be described using the model for fault-tolerant secure computation (al-
though the purpose in not to conceal the inputs, and although channels are not private in the
original model® [74]). Suppose that the consensus value will be 0 when the honest players do not
have the same initial bit. Then each player 7 begins with private input b; on its tape. At the end
of the protocol, each player has the value f(by,- -, by,) on its output tape, where f(b1, -, b,) = b1
if b = -+ = b, and = 0 otherwise. The requirement is that this protocol remain correct in the
presence of an active adversary; a more precise condition is to say that the protocol is “resilient,”
which will be defined in the next subsection.

3.3 Security Definitions

There are two important security properties of computation protocols that are considered in this
paper: “privacy” and “resilience.” These terms capture the ability of a protocol to withstand some
fraction of faulty players that are under the control of an adversary.

Privacy assumes a passive adversary. A protocol is said to be “t-private” if, given any set of at
most ¢ faulty processors, no passive adversary can learn anything more about the private inputs
of the honest players than is otherwise revealed by knowing the output of the computation and
knowing the private inputs of the faulty players. This can be formalized by considering whether
there is an algorithm, of the same computational power as the adversary, that, given only the
output and faulty players’ inputs, can in some sense simulate anything achievable by the adversary
throughout and at the end of the protocol.

More precisely, we can say that a given coalition C learns no useful information when performing
a protocol to compute a function f, if the following holds: For every two input vectors s, s' such
that f(5) = f(5') and such that §¢ = s}, the distributions of messages exchanged between C and
C are computationally indistinguishable, where the distributions are over the random tapes of C.

Resilience assumes an active adversary. A protocol is said to be “t-resilient” if no active ad-
versary, with at most ¢ faulty processors under its control, can (1) learn anything more about
the private inputs of the honest players than is otherwise revealed by knowing the output of the
computation and knowing the private inputs of the faulty players; or (2) prevent any honest player
from having the correct result on its output tape at the end of the protocol.

! A fast probabilistic protocol for Byzantine Agreement in a network of private channels is due to Feldman and
Micali [52]; this is closer to the model that we consider in this paper.
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Note that the notion of “correct result” in the definition of ¢-resiliency is not straightforward.
Certainly the adversary could have one or more faulty players behave as though they held a different
input than they actually did, while otherwise being in perfect accordance with the protocol. This
behavior cannot be protected against by the honest players. What can be said is that if each player
initially commits to an input (e.g., using a verifiable secret sharing scheme) then the honest players
must learn the value of the function at those committed inputs; cheating players who fail to commit
are eliminated from the computation. In addition to maintaining privacy, initial commitment also
guarantees “independence of inputs,” i.e., the faulty players’ inputs cannot be related in any way
to the honest players’ inputs. For example, the margin of victory of a secret-ballot election could
be influenced by announcing votes as they were made.?

Notice also that under certain conditions a protocol that requires a broadcast channel is equiv-
alent to a protocol that requires only a network of private channels. Obviously, if the adversary
is passive, then each broadcast can be simulated by sending the same message privately to each
player. More interestingly, if the adversary is active, then each broadcast can also be simulated on
a private network if there are sufficiently few faulty players. Using Byzantine Agreement [74] [52],
a t-resilient protocol that requires a broadcast channel can be converted into a ¢-resilient protocol
that needs only a network of private channels, whenever n > 3t.

3.4 Unifying Protocol Models

Rather than proving the above properties directly and individually, one may try to somehow capture
all of the “good” properties of a secure protocol in one crisp definition. This is an important
endeavor, since it can lead to formal proofs of properties we would require of general protocols
(although that level of formality is beyond the scope of our overview). In this subsection, two
proposals for such a definition are described. A third proposed definition, due to Goldwasser and
Levin [59], will not be discussed.

One proposal to put this area on a more formal foundation is due to Beaver [9]. He defines the
idea of an “interface” to allow an adversary for one protocol to attack a second protocol; an interface
is a Turing Machine that sends messages to the adversary and sends how-to-corrupt instructions to
the second protocol. Two protocols can then be defined to be equally resilient if there is an interface
such that the output distribution of the first protocol with any adversary is indistinguishable from
the output distribution of the second protocol with the same adversary through an interface. The
output distribution covers both the information that is available to the adversary at the end of
the protocol and the influence that the adversary can have on the final state of the players of the
protocol. A similar definition of equally private protocols can be given.

Given these notions of relative resilience (privacy), a protocol can be defined to be resilient
(private) if it and an “ideal” protocol are equally resilient (private). Here an ideal protocol is a
protocol that can make use of additional trusted parties that no adversary can influence. Among
the strengths of this definition is that it provides a single unifying security measure, and that it
facilitates modularity in both protocol design and proof of security.

Another proposed formalization, due to Micali and Rogaway [78], builds on the successful
definition of the zero-knowledge property for interactive proof systems. They define a “simulator”
for a protocol, which can interact with an adversary in place of the network of processors. In

ZThis is one reason why exit poll data is not released until after all polls close nationwide on Election Day.
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addition to reading all private tapes of the adversary at all times, the simulator can access certain
limited information about the private inputs by querying a certain oracle. The oracle only allows
queries about private inputs and computed outputs that are consistent with the power of the
adversary. For example, if an active adversary can dynamically corrupt up to ¢ players, then ¢
input queries and one output query can be made by the simulator. The single output query must
be made at inputs that agree with the real private inputs everywhere except possibly on those
components about which input queries have been made. Furthermore, that query must use values
for the queried components that are a function only of the adversary’s current history (e.g., not a
function of the simulator’s coin flips).

There are two ensembles of distributions of interest. One is the view of an adversary attacking
the protocol, which includes the tape contents of and messages to all corrupted players. The second
is the simulated view, which includes only the output of the simulator after interacting with the
adversary. A protocol is resilient if, for any adversary, there exists a simulator such that these two
ensembles are indistinguishable.

4 Two-Party Cryptographic Secure Distributed Computation

4.1 Main Ideas

In this subsection, we present two-party computation protocols whose security rely on cryptographic
assumptions. There are two types of protocols, both of which work from the circuit representation
of the computed function. The first type has two largely non-interactive subprotocols; one player
“scrambles” the circuit in some manner, then they interact, and then the second player “evaluates”
the scrambled circuit. The second type is an interactive gate-by-gate evaluation of the circuit for
encrypted inputs.

Note that secure two-party computation is not possible in general without some complexity
assumption. As a simple example, Ben-Or, Goldwasser, and Wigderson [20] show that there cannot
be an information-theoretically secure two-party protocol for computing the OR of two input bits.
There are other impossibility results for unconditional two-party computation that are covered in
Section 2.6.

The first results in two-party secure computation are due to Yao [94]. He was interested in
a setting in which both parties behaved honestly, but wished to maintain the secrecy of their
inputs (“l-privacy” as defined in Section 2.2.3). One of the problems he considered was called
the “Millionaires’ Problem.” Two millionaires wish to know who is richer, without revealing any
other information about each other’s net worth. One of the solutions proposed for this problem
depends on the existence of a public-key cryptosystem; two others were mentioned that relied
on commutative one-way functions and probabilistic encryption respectively. Other applications
mentioned included secret-ballot elections and private database queries. In this same paper, Yao
indicated without details that any 2-ary function f(z, y) could be computed privately by two players
assuming the hardness of factoring.

4.2 Protocols

The first general two-party secure computation protocol result is due to Yao [95], who considers a
task that is somewhat more general than the computation problem described in Section 2.2. Instead
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of computing a deterministic function, an “interactive computational problem” has inputs and
outputs that are distributed according to given probability distributions. This reduces to function
evaluation when, for each pair of inputs, there is only one element of the output distribution with
non-zero probability. Assuming the intractability of factoring, Yao shows that every two-party
interactive computational problem has a private protocol.

Goldreich, Micali, and Wigderson [57] show how to weaken the intractability assumption from
factoring to the existence of any trapdoor permutation. In fact, their protocol solves the following
slightly different, but equivalent, problem of “combined oblivious transfer.” There are two parties
A and B, with private input bits a and b respectively. At the end of the protocol, A is to receive
the value f(a, b) without learning anything further about B’s input bit 5. Meanwhile, B is to learn
nothing at all about A’s input bit a.

We sketch this protocol for combined oblivious transfer. Assume that E(M,r) is a probabilistic
encryption function for the message M and the random key r, such that M is easily recovered from
E(M,r) and r. Suppose that the circuit C for the function f(z,y) consists of gates g1, -, gm,
where each g; is either a binary AND gate or a unary NOT gate. Assume that the final output of
the circuit is the output of the gate g,,. For simplicity of notation, consider the inputs z and y to
be 0-ary gates g, and g,. Let the encryption function E take as input an s-bit message string m
and an s-bit random string r (for some security parameter s). As usual, “@” denotes either the
exclusive-or of two bits or the bitwise exclusive-or of two binary strings.

The players proceed as follows, with a “circuit construction” phase by B and then a “circuit
evaluation” phase by A:

1. B chooses random s-bit strings 71,7}, *, Tm, Tyy, Tz, Ty Ty, Ty
2. B chooses random bijections ¢y, - - -, @, ¢z, ¢y such that ¢; maps {r;, 7;} to {0,1}.

3. For each AND gate g;, B constructs the set S; as follows:

a) Find the gate gj.4; whose output feeds into the left input of g;.

(
(

)
b) Find the gate g,ign: whose output feeds into the right input of g;.
(c) Choose random s-bit messages m;1, m;2, M;3, Mia.
(d) Compute the related values m};, - - -, m}, as follows:

1. mz-1 =m;1 D ¢1:_ (¢left(7'left) A ¢ri9ht(7'right))
ii. miy = mizs @ ¢i_1(¢left(7'le_ft) A @right (Tright))
iii. mis = miz @ ¢~ (Prese(Tiese) A bright (Thighs))
iv. mly, =m;s ® ¢i_1(¢left(rleft) A ¢T1:th(r':'ight))
(e) Construct the pairs p1, pa, ps, ps as follows:
i. p1 =< E(mil;rleft): E(mgurright) >
ii. pa =< E(m;a, Tfeft): E(miy, Tright) >
iii. p3 =< E(mi3, Tiest), E(mis, Tipn) >
iv. ps =< E(mya, T;e_ft)a E(miy, T:-ight) >
(f) Let S; be some random permutation of the set {p1, p2, ps, pa}.
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4. For each NOT gate g;, construct the set S; as follows:

(a) Find the gate gonsy whose output feeds into the input of g;.

(b) Let S; be some random permutation of the set

{E(6: " (1® onty(Tonty)): Tonty), E (i (1 ® bonty (Thniy)) s Tomsy) }-

5. B— A: 81,85,--,5m, ¢y_1(b), Om = {< Tm, Om(tm) >, < 1L, dm(rl) >}

6. B — A: ¢;'(a) via 1-2-OT (i.e., B offers a choice of ¢,'(0) and ¢(1), and A chooses to
receive the first if @ = 0 and the second if a = 1.

7. Player A now proceeds to evaluate the “circuit,” as given by the received sets Sy, -+, Sn.
Originally label all of the AND and NOT gates g1, g2, -, gm as “unmarked.” At the start
of this phase, A is said to “know” the values ¢;!(a) and qS;l(b) received in steps 5 and 6.
While there remains an unmarked gate, do the following:

(a) If there is an unmarked NOT gate g; such that its input wire connects to the output
wire of gate goniy, and such that player A “knows” one of the elements in the domain
of @onty, then A can decrypt exactly one of the elements of S;. Specifically, A can find
D(E(qﬁi_l(l D Doniy(Tonly)), Tonly), Tonly) = 45;1(1 ® donly(Tonty)) if A “knows” ropiy in the
domain of ¢ony; and A can similarly find ¢i_1(1 D Donly (rfmly)) if A “knows” rfmly. This
decrypted value, an element in the domain of ¢;, is now said to be “known” by A. Mark

the gate g;.

(b) If there is an unmarked AND gate g; such that its left input wire connects to the output
wire of gate gj.y: and its right input wire connects to the output wire of gate grignt,
and such that player A knows one of the elements in the domain of ¢j.¢; and one of the
elements in the domain of ¢,;gn:, then A can decrypt both elements of exactly one pair
of S;. For example, if A “knows” 7jc#; in the domain of ¢4 and r':"ight in the domain of
@right, then A can compute D(E(m;3, Tiest), Tiest) = mis and D(E(m!s, r:,ight), r:‘ight) =
mi5. The bitwise exclusive-or of the decrypted values is one of the elements in the domain
of ¢;, e.g., miz ® miy = ¢,L-_1(¢le_ft(7’left) A ¢'right(r;-1jght))- This element in the domain of
¢; is now said to be “known” by A. Mark the gate g;.

8. At this point, A “knows” one of the elements 7 in the domain {r,, ..} of ¢,,, where g,, is
the final output gate. The final output C(a, b) is taken to be ¢, (7).

It is straightforward to show that, if B performs the construction correctly, then A can mark
all of the gates. Furthermore, the final value ¢,,(r) can be shown to be the correct value of the
circuit C'(a, b), as follows. Each occurence of step 7a maintains the following invariant property: If
A “knows” the element r} ; at the start, and “knows” the element r} at the end, then ¢;(r}) =
1 EBqSonly(r;nly). Each occurence of step 7b maintains the following invariant property: If A “knows”
the elements r, ;, and r;, ,, at the start, and “knows” the element r; at the end, then ¢es:(r. ;) A
Gright (Trign:) = @i(r]). Thus, in both cases, ¢;(r}) is the value computed by the gate g;. At the
end A knows 7}, and, since A received ¢y, in step 5, A can compute ¢,,(7},) = C(a, b), the value

of the output of C.
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It can also be shown that A learns no additional useful information about B’s input. For
example, in step 7b, A can decrypt single elements from some of the pairs p1, - - -, p4, but can only
decrypt both values from a single pair. Since the m;; values are random, a single element from a
pair yields no useful information.

Note that trapdoor permutations are needed in this protocol to implement 1-2-OT (via a con-
struction due to Even, Goldreich, and Lempel [50]).

Galil, Haber, and Yung [55] show how to reduce further the complexity assumption from trap-
door permutation to one-way function plus Oblivious Transfer. As before, one player is the “circuit”
constructor, and the other is the “circuit” evaluator. The constructed circuit consists of a number
of “gates,” each of which enables a single decryption key (output) to be recovered from the knowl-
edge of two decryption keys (inputs). The input decryption keys serve as seeds for a pseudorandom
number generator (which can be based on any one-way function [66] [63]) that returns the output
decryption key (yet another seed for the generator).

Kilian [70] shows how to base oblivious circuit evaluation solely on Oblivious Transfer as a
primitive (black-box reduction). In Section 2.2.2, we showed Crépeau’s bit commitment scheme
based on Oblivious Transfer [46]. At the heart of Kilian’s construction is a method for extending
this commitment scheme so that any NP statement can be proven about committed bits in a zero-
knowledge fashion (i.e., without revealing anything further about the committed bits). The circuit
evaluation protocol takes advantage of the equivalence (shown by Barrington [6]) of NC! functions
and width 5 permutation branching programs. Instead of scrambling a circuit, the appropriate
permutation programs are randomized in a simple and straightforward manner; this leads to a
constant-round evaluation protocol when the underlying function is in NC!. Any polynomial-sized
circuit can then be evaluated by considering it to be a cascade of NC! subcircuits (and being
careful to enforce consistency between inputs and outputs of connected subcircuits).

Unlike the previous protocols, a protocol due to Chaum, Damgard, and Van de Graaf [36] for
two-party secure computation has both parties contribute to the scrambling of the circuit. This
protocol requires a bit commitment scheme with additional nice properties: “blinding” (i.e., the
recipient of a committed bit can compute a commitment of any bit xored with the committed bit),
and “comparability” (i.e., the recipient of two committed bits can be convinced by the committer
that they are equal). Chaum, Damgard, and Van de Graaf show how to achieve such an enhanced
bit commitment scheme based on any one of several number-theoretic problems: Quadratic residue,
discrete log, or Jacobi symbol (even though the Jacobi symbol can be efficiently computed). For
example, a strong bit commitment scheme with blinding and comparability can be based on the
discrete log under the DLA. A bit b is unconditionally hidden as a®¢™ mod p for prime p, generator
g of Z,*, fixed a € Z,*, random r € Z,* (i.e., even if discrete log is easy, b cannot be guessed from
abg™ mod p without guessing r). It is then conditionally unforgeable: finding a random 7’ such that
al=t¢g™" = abg™ mod p is equivalent to finding the discrete log of a. To blind a commitment  with
a known bit &', the recipient computes a® g"lzc mod p for random r’. To compare commitments z
and y, the committer reveals the discrete log of a~'zy if z # y, and reveals the discrete log of z 71y
ife=uy.

The discussion of the protocol itself is deferred to the section on multi-party cryptographic
computation, since the same general protocol can handle any number of players.

Abadi and Feigenbaum [2] present a two-party computation protocol that is similar to the
protocol of Chaum, Damgard, and Van de Graaf. This protocol is described using the idea of
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instance hiding from an oracle, which was discussed in Section 2.1.7. The protocol allows one
player to keep a circuit hidden unconditionally (except for the number of AND gates), while the
other player can hide the input to the circuit conditionally (i.e., under the QRA). Since circuit
can become data (i.e., as a description to be input into a universal circuit), and since data can
become circuit (i.e., hardwired into a universal circuit), the same protocol can provide unconditional
security for data with conditional security for the circuit.

Let Er(z) denote the encryption of z using the probabilistic encryption scheme based on
quadratic residuosity described in Section 2.1.3: Eg(z) is a random square modulo k if z is 0,
and a random nonsquare otherwise. Dj is the corresponding decryption function, which is hard
(under the QRA) unless the factorization of k is known.

Let A be the circuit hider, and let B be the data encrypter. Suppose that the circuit C,
consisting of some number of binary AND gates and unary NOT gates, is known to player A, and
that the input data z1,z,, - - -, ,, is known to player B. The players proceed as follows:

1. B chooses k = pq, where p and ¢ are secret primes congruent to 3 mod 4.
2. B encrypts each bit z; as y; = Ex(z;).
3. B~ A: Y1, 92,y Ym-

4. While there still remains some gate g; such that A knows the encryption of all inputs but
does not know the encryption of the output, do the following:

(a) If g; is a NOT gate with encrypted input y, then A finds the encryption of the output
to be —y (since —Eg(b) = Er(1 — b) always for k of this form).

(b) If g; is an AND gate with left encrypted input y; and right encrypted input y,, then A
finds the encryption of the output interactively, as follows:

i. A chooses random elements r;, r; and random bits b7, b and computes
Y1 = (—1)r%y; and g5 = (—1)P2r5%y,.
ii. A= B: y1,95
iii. B computes b} = Dg(y}) and by = Dg(y3)
iv. B— A zo0 = Ex(b] A DY), zo1 = Ex(b) A (18 b)),
210 = Eu((L@Y) Ab), 211 = Bu((1© b)) A (10 B)))
v. A determines the encryption of the output of the gate to be z, 3,.

At this point, A holds the encryption z of the output of the entire circuit. The protocol can
end to give the output exclusively to either player, as follows:

5. To give the output exclusively to player B, do the following:

(a) A chooses a random 7.
(b) A»B: 2 =1’z
(c) B finds the output to be Dg(z')

6. To give the output exclusively to player A, do the following:
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(a) A chooses a random 7 and a random bit b.
(b) A= B: 2/ = (~-1)br22

(c) B— A: = Dg(2)

(d) A finds the output to be ¢’ @ b.

If both parties follow the protocol, then exactly one of them ends with the output of the circuit.
Privacy is maintained due to the QRA and the random self-reducibility property of quadratic
residues and nonresidues. Since each AND gate must be evaluated interactively, the data encrypter
B learns the number of AND gates in the circuit.

It is interesting to consider the effect of an active adversary on the two protocols described in
detail in this subsection. For the protocol of Abadi and Feigenbaum, if the circuit hider is to receive
the output, then malicious behavior could be costly. At the final stage, when the output is to be
decrypted, the circuit hider could substitute any encrypted bit of interest (multiplied by a random
square); for example, the circuit hider could choose to learn one of the input bits instead of the
output bit. By contrast, the protocol of Goldreich, Micali, and Wigderson cannot be exploited in
this way by an active adversary (unless the 1-2-OT cannot withstand an active attack), since there
is virtually no interaction between the two players. Of course, a cheating player in either protocol
can cause the other player to receive the incorrect output without detecting that misbehavior has
occurred.

5 Multi-Party Cryptographic Secure Computation

5.1 Main Ideas

In the preceding subsection, several protocols were described for securely computing any two-input
function to which each of two players held one of the inputs, given some “reasonable” intractability
assumption. Does this generalize to more than two players?

One tempting approach would be to reduce an n-input function to a series of 2-input functions,
e.g., reduce n-ary addition into the pairwise computation of n — 1 partial sums. This computes the
correct answer, but it risks leaking information to players involved in computing the intermediate
results.

In fact, general protocols for conditional (i.e., cryptographic) multi-party computation have
been found. Moreover, some of the solutions do rely on reducing the computation to a series of
two-party computations, but in a more sophisticated manner.

All of the protocols described in this subsection follow the three-stage paradigm introduced
by Goldreich, Micali, and Wigderson [57]: an input sharing stage, a computation stage, and an
output reconstruction stage. The idea is that computation is performed on shares of private inputs,
ultimately producing shares of the final answer. These shares are combined in the third stage to
reveal only the output to all of the players.

Another technique that is used by several of the protocols is to do “second-order” sharing, i.e.,
sharing of shares. This idea was first exploited by Galil, Haber, and Yung [55], and is useful for
allowing players to prove to one another that their actions are consistent and correct, as well as for
enhancing fault tolerance.
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Channel: broadcast only
Adversary: t passive, t < n
Security: trapdoor function
bit complexity: O(n?0C)
round complexity: O(n?D).

Table 1: Summary of Goldreich, Micali, and Wigderson 1987 (passive adversary)

Some protocols (beginning with the results of Goldreich, Micali, and Wigderson [57]) that
protect against an active adversary use zero-knowledge proofs in the course of the computation.
As described in an earlier section, every language in NP has a zero-knowledge proof system. Such
a proof system allows anyone to demonstrate membership in the language without leaking any
additional information. Consider the set of all legal messages that can be sent at a given moment
in the course of a protocol. As this is a language in NP, the actual message sent can be followed by
a zero-knowledge proof of membership [56]. This “validates” the message without compromising
security. In fact, a zero-knowledge proof of knowledge of membership suffices to validate each
message in the protocol.

This subsection is divided into three further subsubsections. The first describes multi-party
computation in the presence of a passive (“gossiping only”) adversary. The second considers multi-
party computation when the adversary is active, and presents new protocols for this problem as well
as modifications of passive-adversary protocols. The third gives multi-party computation protocols
that achieve “fairness,” a condition which limits the advantage that can be gained by the adversary
if faulty players quit the protocol before completion.

In this subsection and the next, some of the protocols that are discussed are accompanied by
a table summarizing their basic properties. Each table gives the channel assumptions, the type of
adversary that can be tolerated, the security conditions, the probability of error (when relevant),
the bit complexity of communication, and the round complexity of communication. In these tables,
the number of players in the protocol is denoted by =, the size of a circuit is denoted by C, the
depth of a circuit is denoted by D, and Bz(k) and Rz(k) denote the bit complexity and round
complexity of a message validation via zero-knowledge proof (with security parameter k).

5.2 Multi-Party Cryptographic Protocols versus Passive Adversaries

A two-party protocol for any two-input computation, due to Goldreich, Micali, and Wigderson [57],
was presented in Section 2.3.2. That protocol assumed only the existence of any trapdoor function.
In the same paper, multi-party computation is reduced to a succession of two-input computations,
in such a way that privacy is maintained.

Using a technique due to Barrington [6], the depth D circuit to be computed can be represented
as a straight-line program, of length at most 4”, whose inputs are permutations in S5 (the 120
possible permutations on five distinct elements). Each player can then privately convert his input
into a single corresponding permutation. The computation reduces to finding the composition of a
string of private and public permutations.

In the first stage of the protocol, each player shares its permutation with all of the players. A
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Channel: broadcast only
Adversary: t passive, t < n
Security: one-way function plus Oblivious Transfer
bit complexity: O(n?0C)
round complexity: O(D)

Table 2: Summary of Galil, Haber, and Yung 1987

permutation o is shared by giving a new permutation o; to each player 7, where o1, -, 0, is an
otherwise random collection of permutations whose composition is ¢y 0---0 0, = 0.

In the second stage of the protocol, the straight-line program is performed, from left to right,
on the shares of the inputs. As the computation proceeds, each player will hold a share of the
partial result obtained thus far.

Composition with a public permutation is immediate. If the straight-line program calls for
composing a given permutation ¢ with a public permutation ¢ to get ¢ o o, then the first player
replaces its share o; of o with the the composition ¢ o o;.

The composition of two permutations is more difficult. It is not enough for each player to
take the composition of its two shares, because of the non-commutativity of composition, i.e.,
cgoo' = (610---00,)0(0]0---00)) # (61007)0---0(op00)). The composition of two
permutations reduces to the composition of 2n share permutations, but each player’s shares are
initially “too far apart.”

The nice solution is to perform a series of “swaps” of neighboring share permutations. A “swap”
is a two-party protocol that inputs two permutations p and 7, and outputs two otherwise random
permutations p’ and 7’/ such that po7 = 7/ 0 p’. Since this is a well-defined two-input random
function, a two-party secure computation protocol for swapping can be implemented (using the
general techniques from Section 2.3). This protocol should give only one of the two outputs to each
player: p’ is given only to the player who input p, while 7’ is given only to the player who input 7. If
the swaps are performed purposefully, then one player’s two shares are “closer” together after each
swap; each player privately finds the composition of its two shares whenever those shares become
adjacent. A total of O(n?) swaps are necessary to maneuver each player’s shares into adjacent
locations.

It is shown in the paper by Galil, Haber, and Yung [55] how to reduce the intractability as-
sumption from the existence of trapdoor functions to the existence of one-way functions and a
subprotocol for Oblivious Transfer. They also show (in joint work with Micali) how to perform
private multi-party computation of boolean functino directly, instead of working with straight-line
programs and permutations.

In the first stage, each player shares its input bit by giving each other player a one-bit share.
The shares are chosen so that their xor yields the input bit, and so that they are otherwise random.
Public-key cryptography is used to transmit shares to players. In the second stage, the function is
computed by evaluating its corresponding circuit using only the shares of the private inputs. When
the evaluation reaches any intermediate wire, each player has a share of the proper value at that
wire (for the given circuit and secret inputs). It suffices to show how to evaluate a NOT gate and
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an AND gate.

Negation is immediate. A NOT gate is evaluated by having one player (e.g., the last player)
take the complement of its share of the input to the gate.

Conjunction is more difficult. There is no private computation that players can perform on
only their own shares of the two inputs to yield a proper share of the output. However, as with the
previous protocol, there is a two-player protocol which may be repeatedly performed by pairs of
players to help compute the final shares (using the general techniques from Section 2.3). Moreover,
this two-player protocol is quite simple. One player inputs bits # and y, the second player inputs
bit z, and the second player receives the output bit f((z,y),z) =z @ (y A 2).

Why does this two-party protocol suffice? Suppose that a A b is to be computed, where each
player ¢ holds the xor shares a; and b; of @ and b. Let r;1, - - - 7;,, be random bits created by player <.
Then, for all ¢ # j, players ¢ and j perform the two-player protocol twice: once to give player j the
value f((rsj, a;),b;) = ;@B (a; Ab;), and once to give player ¢ the value f((rji, ;), a;) = r;;®(bjAa;).

Furthermore, note that these n(n — 1) two-party protocols can all be performed in parallel,
unlike the permutation-swappings of the previous protocol. After performing these n(n — 1) two-
party protocols, each player can assemble a share of aAb by taking the xor of 2n—1 values available
to it: all n — 1 of its received outputs, together will all n — 1 of its own random bits, together with
the conjunction (a; A b;). Simple (boolean) algebra will verify that this gives each player an xor
share of a A b.

In each of the two preceding multi-party cryptographic protocols, a simpler two-party protocol
was repeated many times: permutation “swapping” for [57] “and-xoring,” i.e., f((z,y),2) =z ®
(y A z) for [55]. In each case, a general protocol for two-party secure computation was then invoked
to establish that the complete multi-party protocol was possible.

Goldreich and Vainish [58] observe that general two-party secure computation is unnecessary
for these two specific cases. Assuming a protocol for Oblivious Transfer, special-purpose private
protocols can achieve the necessary aims directly. For and-xoring, the first player can create two
secrets so =z @D (yA0) =z and s; =z @ (yA1l) = 2@ y. Then the second player can choose
the appropriate secret s, by 1-2-OT. For permutation swapping, the first player begins with p and
the second player with 7. The first player can create a random permutation p’ for itself, and 120
permutations of the form 7/ = p o7 0 p’~! for each possible T held by the second player. Oblivious
Transfer (modified to be “1-120-OT”) can give the second player the appropriate 7’.

In that same paper, Goldreich and Vainish present alternative implementations of both of these
two-party functions which are secure against an adversary whose strength is slightly greater than
that of a passive adversary. A “value-preserving” adversary may deviate from the protocol in any
manner which does not affect the output of the computation. Protocols for both “and-xoring” and
“permutation swapping” are given, and shown to be secure against a value-preserving adversary

(under the QRA).

5.3 Multi-Party Cryptographic Protocols versus Active Adversaries

As described in Section 2.2.1, an active adversary can cause faulty players to deviate from a protocol
arbitrarily. If a protocol is to be secure against such an adversary, then the honest players should
be able to detect when deviations occur and to take corrective action. Often, the action to be taken
is to kick out the offending players and continue the protocol somehow in their absence.
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Channel: broadcast only
Adversary: t active, t < n/2
Security: trapdoor function
Error Prob: 0(27%)
bit complexity: O(Bz(k)n’C)
round complexity: | O(Rz(k)n?D)

Table 3: Summary of Goldreich, Micali, and Wigderson 1987 (active adversary)

Goldreich, Micali, and Wigderson [57] show how to modify their multi-party private protocol
to achieve a multi-party resilient protocol.

In the first stage of the protocol, each player commits to its secret input and to the random bits
(generated by the community of players) that it will use during the computation phase. A verifiable
secret sharing scheme is used to share the input with all players, and a coin-flipping scheme is used
to generate random bits in a way that is reconstructible by the remaining players. After these
commitments, any player can be fully “exposed” by the remaining community of honest players.

In the second stage, each message that is sent in the protocol is validated via zero-knowledge
proof (as described in Section 2.1.5).

The protocol proceeds otherwise as in the passive adversary case. If any player is caught
cheating, then its private input and random tape are reconstructed by the community (Recall that
this is possible using the shares of the honest players). For the remainder of the protocol, any
messages this player would have sent can be simulated privately by each remaining player.

Notice that in this model the penalty for cheating is severe. Banishment with full exposure
is a reasonable response for a real cheater, but it may be a cruel and unusual reaction to an
honest mistake. For example, if an honest player’s messages are delayed in transit (stop failure), or
otherwise due to some random distribution, then that player may find itself outside of the protocol
with its secret input revealed to the community. In a kinder world, even a suspected cheater’s
secret input would remain secret, and rehabilitation (i.e., reentry into an ongoing protocol) would
be possible.

Galil, Haber, and Yung [55] show how to modify the active adversary of Goldreich, Micali, and
Wigderson to achieve this kinder world. The key idea is to use secondary shares (shares of shares)
in the first stage of the protocol. After receiving shares of all secret inputs and random bits, each
player verifiably shares all of these shares with the other players.

When a cheating player is discovered in stage two, then that player’s secret input and random
bits are not exposed. The primary shares held by that player are exposed, so that the remaining
players can adjust their shares accordingly. However, whenever a message is needed from the
cheating player, the other players compute it, in a secure distributed manner, from the shares they
were given in stage one of the cheating player’s input and random bits (thus “bootstrapping” secure
computation to improve itself). Not only is the private input kept private, but a simple procedure
allows the cheating player to rejoin the protocol at any time. In the rejoin protocol, each player
splits each share in two. One is kept, and the other is given to the returning player to construct a
share of its own.
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Channel: broadcast only
Adversary: t active, t < n/2
Security: discrete log for n — 1, unconditional for 1
Error Prob: 027
bit complexity: poly(n,s,C)
round complexity: O(ns+ D)

Table 4: Summary of Chaum, Damgard, and Van de Graaf 1987

In Section 2.3.2, a two-party cryptographic protocol due to Chaum, Damgard, and Van de
Graaf [36] was mentioned in which both players contributed to the “scrambling” of the circuit
(truth table), and then both players evaluated the scrambled circuit at their private inputs. A more
general version of this protocol works for any number of players. In the general case, each of n
players contributes to the scrambling (i.e., each player takes a turn to further modify a “transform”
of the circuit), and then all n players evaluate the scrambled circuit. This direct approach differs
from the other solutions in this subsection, all of which reduce each gate to a collection of O(n?)
two-party subprotocols. We present this protocol (modified for purposes of clarity) in some detail.

Recall from Section 2.3.2 that the method depends upon a bit commitment scheme with the
additional properties of “blinding” (xor modification of commitments) and “comparability” (proof
of equality of commitments).

To simplify the presentation, assume that the circuit consists of gates g1, g3, - -, gm, each of
which is either a binary AND gate or a unary NOT gate; in fact, the construction of Chaum et
al evaluates arbitrary gates directly. As a further simplification, assume that each player ¢ holds
a single input bit z;; the general construction can allow each player to hold any number of input
bits. Lastly, assume that each input z; is a 0-ary gate g,;, with output z;, 1 <4 < n, and that the
output of the circuit is the output of the gate g,,.

1. A “O-transform” is constructed for each gate g in the circuit. The transform of a gate is a
pair [S, C] where C is a set of bit commitments, and where S is a set of tuples of bits and bit
commitments. They are constructed as follows:

(a) If g is a binary AND gate, then its O-transform is [S, C] where
S={<0,00,0>1<0,1,0,0>,<1,0,0,0>,<1,1,1,0 >} and C = 0.
(The first three components of each tuple in S give the truth table for AND.)
(b) If g is a unary NOT gate, then its O-transform is [S, C] where
S={<0,1,0>,<1,0,0 >} and C = 0.
(The first two components of each tuple in S give the truth table for NOT.)

(c) If g is a O-ary input gate g, then its O-transform is [S, C] where S = 0 and C = 0.

2. For ¢ from 1 to n, the ith player is assumed to have the (¢ — 1)-transform of each gate in the
circuit, and converts them into i-transforms as follows:

(a) Choose n 4+ m random bits cg,," -, Cz,,C1," * , Cm, one for each gate in the circuit (in-
cluding 0O-ary input gates).
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(b) For each gate g in the circuit, change the associated (¢ —1)-transform into an ¢-transform
for the same gate as follows:

i. If g = g, is a 0-ary input gate, and the associated (¢ — 1)-transform is [S, C], then
create a bit commitment for ¢,; and append it to C.

ii.

iii.

1v.

If g
If g
A.

B.

Q

e

If g

&

Q@HE=EDAQ

H.
I

= gz; is a O-ary input gate, j # 4, then make no changes at all.

= g1 is a binary AND gate, then do the following:

Find the associated (¢ — 1)-transform [S, C] of g;, where

S ={< a11,812,a13, Ry >, -+, < @41, @42, as3, R4 >}.

Find the gate gj.s+ whose output wire connects to the left input wire of g;, and
replace each (¢ — 1)-transform entry a;; with aji1 @ clepe, 1 < j < 4.

Find the gate grjgn: whose output wire connects to the right input wire of g;,
and replace each (¢ — 1)-transform entry aj; with aj @ crighe, 1 < j < 4.
Replace each (¢ — 1)-transform entry a;s with ajs @ ¢, 1 < j < 4.

Create a bit commitment for ¢; and append it to C.

Choose 4i random bits 7, 1 < j<4,1<k<i Letrj=r; ®rja® - -Drj.
Replace each (¢ — 1)-transform entry ajs with ajzs @ r;, 1 < j < 4.

Modify the kth bit commitment in R; so that it goes from being a commitment
of b to being a commitment of 6@ rj,, 1 < 57 < 4,1 < k < i. Notice that this
step relies on the blinding property of the bit commitment.

Create a bit commitment for r;; and append it to B;, 1 < j < 4.

. Randomly permute the elements of S.

= g1 is a unary NOT gate, then do the following:

Find the associated (i — 1)-transform [S, C] of g;, where

S ={< ai1,a12, R1 >, < ag1, ass, Ry >}.

Find the gate goniy Whose output wire connects to the only input wire of g;, and
replace each (¢ — 1)-transform entry aj; with aj; @® cony, 1 < 7 < 2.

Replace each (i — 1)-transform entry aj; with aja @ ¢, 1 <j <2.

Create a bit commitment for ¢; and append it to C.

Choose 2i random bits 75, 1 < j<2,1<k<i Letrj=r; ®rja® - - P rji.
Replace each (¢ — 1)-transform entry aj; with aj; @ r;, 1 < j <2.

Modify the kth bit commitment in R; so that it goes from being a commitment
of b to being a commitment of 6@ rj,, 1 < 57 < 2,1 < k < i. Notice that this
step relies on the blinding property of the bit commitment.

Create a bit commitment for r;; and append it to B;, 1 < j < 2.

Randomly permute the elements of S.

Player ¢ uses a cut-and-choose zero-knowledge proof procedure to convince the other
players that the i-transforms were created from the (¢ —1)-transforms correctly. This
requires that the player create other legal i-transforms of the same truth table, and
then respond to challenges by other players. In response to a challenge, one of the

other i-transforms is either opened (i.e., all bit commitments revealed), or compared
with the first ¢-transform (i.e., to show that either both are valid or both are invalid).
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The comparison challenge is possible because of the “comparability” property of the
bit commitment scheme. The details of this proof procedure are omitted.

At this point, the n-transforms of all gates have been constructed by player n, and are
known to all players. The evaluation of the circuit at the players’ input is as follows:

(c) Each player ¢ announces its masked input bit z; @ c,;.
(d) Mark every non-input gate g1, - -, gm “unevaluated.”
(e) While some gate remains unevaluated, do the following:

i. Choose an unevaluated gate g all of whose inputs have been announced.
ii. If g is a binary AND gate [NOT gate], then do the following:

A. Let [S, C] be the n-transform for g, where S = {< a11, a12,a13,R1 >, -,
< a,41,a42,a43,R4 >} [S = {< all,alz,Rl >, < (121,0.22,R2 >}]

B. Find the unique k¥, 1 < k < 4 [1 < k < 2], such that ax; and ag; match [ag;
matches] the announced inputs [input] of g.

C. Open all bit commitments in Ry

D. Announce the output of the gate to be the exclusive-or of ags [ax2] and all
committed bits in Rj.

iii. At this point, the output of gate g,,, has been announced. Let [S, C]be the associated
n-transform of g¢,,.

iv. Open all bit commitments in C.

v. The output of the circuit is taken to be the exclusive-or of the announced output of
gm and all committed bits in C.

One interesting benefit of this protocol is that, if the bit commitment scheme unconditionally
hides the committed bit (e.g., the discrete-log implementation described in Section 2.3.2), then
one player’s inputs are unconditionally secure, even against active cheating by the other n — 1
players. This property suggests that computation that hides all inputs unconditionally might be
possible, a suggestion which Section 2.5 confirms. This property can also be used in a clever way
to achieve a “hybrid” computation protocol [34], which protects both unconditionally (against a
faulty minority) and cryptographically (against any faulty subset). The details of this hybrid are
given in Section 2.5 as well.

5.4 Fairness in Cryptographic Multi-Party Protocols

The protocols described in this paper have thus far focused on the need to protect the secrecy of
inputs while guaranteeing the correctness of the output. A different security property of interest
is how to guarantee that interrupting a protocol confers no special advantage to any parties. This
property is called “fairness.”

The problem of “contract signing,” allowing two parties to agree on a contract in a mutually
committed fashion, predates and is related to the fairness problem; protocols for contract signing
were given by Blum [23]. Fairness itself was originally considered for the basic problem of secret
key exchange. If each of two players conveys a secret to the other, then one player can quit the
protocol at any moment to advantage if at that moment it has received “more” than it has sent.
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Blum introduced the problem [25], and gave an incorrect solution (generalized and corrected by
Yao [94]) when the secrets were factorizations of large composite numbers. Each player takes turns
revealing one bit of one prime factor, while proving that the bit is valid; being one bit “ahead” is
of negligible advantage to a player who halts the protocol prematurely.

When the secrets are single bits, then no deterministic algorithms are known. A probabilistic
solution was found by Luby, Micali, and Rackoff [76]: alternating flips of slightly biased coins
gradually yield statistical information about the values of the secrets, and quitting leaves one
player with the negligible advantage of knowing the outcome of at most one additional coin-flip.
Vazirani and Vazirani [92] investigated a similar but somewhat weaker notion of exchanging a secret
for a valid receipt.

Yao [95] first defined fairness for two-party computation protocols for boolean functions. Infor-
mally, a two-party protocol is fair if neither player can violate the protocol in such a way that the
violator learns the output while the other player is unable to learn it. Galil, Haber, and Yung [55]
extend the notion of fairness to multi-party computation, where it is called “synchrony.” Suppose
that there are n players and that there is an active adversary. The adversary has a certain advan-
tage if it can halt the protocol at some moment when it has a computational advantage over the
honest players at determining the output. If the adversary never can have such an advantage, then
the protocol is said to be synchronous. Computational advantage can be defined to be an increased
probability of successfully distinguishing the actual output from a possible output.

Galil, Haber, and Yung describe a means (similar to Blum [25], and following Yao [95]) for
adding synchrony to a multi-party computation protocol, assuming that trapdoor functions exist.
The n players jointly create a trapdoor key. Instead of performing a secure distributed computation
of the actual function, the players securely compute the encryption of the output of the function
using the trapdoor key. At this point, the players engage in a protocol to reveal the trapdoor key
one bit at a time.

If the protocol is halted before the encryption of the output is found, then the adversary
clearly has no advantage. If the protocol is halted during the gradual revelation of the key, then
the adversary has only a negligible advantage of one bit over the honest players. This assumes,
however, that the adversary and the honest players have equivalent computing power; otherwise,
the adversary could halt when only it had enough bits of the trapdoor key to determine the result
(e.g., by exhaustive search of all completions of the key).

Beaver and Goldwasser [13] present a different way of achieving fairness for boolean functions
(similar to Luby et al. [76]), under the assumption that an Oblivious Transfer protocol exists
(together with a network of private channels). It also does not rely on the computational equivalence
of the adversary and the honest players. Instead of gradually revealing an encryption key that hides
the output, what is gradually revealed is a series of values slightly biased toward the output.

The idea is to reveal a series of values, one at a time, which are related to the actual output.
Each revealed value is the xor of the actual output and a random bit that is biased toward zero
slightly (i.e., with inverse exponential advantage). The actual output can be inferred, with high
probability, after seeing many such values. If the honest players quit after any detected violation,
then the adversary can learn at most one more revealed value; this gives the adversary a negligible
advantage for guessing the output. The protocols for creating the biased bits and for xoring the
output can all be performed in a secure distributed manner. The biased bits are created by a
coin-flipping protocol that relies on the existence of one-way functions; the existence of one-way
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Channel: complete private network, plus broadcast
Adversary: t active,t < n
Security: 2-party oblivious transfer (e.g., noisy channels)
Error Prob: Iﬁ, for any poly p
bit complexity: poly(C, n)
roundcomplexity: O(D)

Table 5: Summary of Beaver and Goldwasser 1989

functions is known to follow from the feasibility of oblivious transfer [15].

Goldwasser and Levin [59] extend the gradual revelation technique from boolean values to
arbitrary values, again assuming only oblivious transfer. Representing the output as a boolean
string, the computation stage reveals the bitwise xor of the output with a jointly created random
mask. After this, the random mask is gradually revealed. This is done by gradually revealing,
through slightly biased coin flips, a number of linear dependencies on the bits of the output. At
the end of this process, each player learns enough linear dependencies to recover the output. Any
premature termination leaves the adversary with only a negligible chance to guess one additional
linear dependency.

Cleve [41] shows how to extend the secret exchange protocol of Luby et al. to allow for a
“controlled disclosure” of information. Rather than having each party’s guess of the other’s bit
merely converge to the correct result, the rate of convergence can also be specified. This can speed
up the round complexity of those fair multi-party protocols that rely on this technique for gradual
revelation.

6 Non-Cryptographic Secure Distributed Computation Proto-
cols

6.1 Main Ideas

At first glance, the idea of a secure non-cryptographic protocol for the distributed computation
of an arbitrary function seems paradoxical. How can the output of a function be computed by
players of unbounded computational power without leaking something, even in only an information
theoretical sense, about the private inputs? Indeed, the idea is paradoxical for arbitrary two-input
functions computed by two mutually suspicious players, as was previously indicated (e.g., for two-
party disjunction). Surprisingly, what is impossible in general for two players becomes possible when
there are many players, by substituting secret-sharing, private channels, and “sufficient honesty”
for cryptography.

An early result in this area (demonstrating the difference when more than two players par-
ticipate) was due to Barany and Furedi [4], who give a l-private non-cryptographic protocol for
an aspect of the multi-player “Mental Poker” problem, i.e., how to deal a deck of cards among
mutually untrustworthy players who can only communicate by sending messages. Their solution
involves all players choosing random permutations of the deck, and sending messages consisting of
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permutations applied to a player’s currently held cards. If player p is to receive the next card, then
these messages result in all other players learning the mapping of their current holdings under a
permutation m known only to p. One of these other players can then select an unused element in
the range of w, and its inverse will be the card next dealt to p.

Most subsequent protocols for non-cryptographic secure computation, and all of the ones given
in this section, rely on the secret-sharing method due to Shamir [88]. This method was described in
Section 2.1.6: To “t-share” a secret s, give each player ¢ a point (o, p(e;)) for some predetermined
o; # 0 (e.g., @; = 1), where p(z) is an otherwise random degree ¢ polynomial whose constant term
is s. All non-cryptographic computation protocols described in this paper use this method in a
“three-stage paradigm” [57]. First, each player shares his secret input with all other players using
a Shamir polynomial. Second, all players perform some computation on these shares. Third, the
results of this computation are combined to find the actual output.

Nice homomorphic properties of Shamir shares (first pointed out by Benaloh [17]) make stage
two possible: any linear combination of shares of secrets is itself a share of the linear combination
of secrets. For example, if p(z) and p’(z) are otherwise random degree ¢ polynomials with constant
terms s and s, then p(z) 4+ p'(z) is an otherwise random degree ¢t polynomial with constant term
s+ s'. Moreover, if player ¢ holds shares s; = p(o;) and s; = p’(o;), then s; + s} is his share of the
sum. The same can be shown for the product of a secret by a scalar.

A “close call” prevents stage two from being entirely non-interactive, i.e., the product of secret
shares is “almost” a share of the product of the secrets. If p(z) and p’(z) are otherwise random
degree t polynomials with constant terms s and s, then p(z)p’(z) does have constant term ss’, but
it is neither degree ¢ (i.e., it is degree 2t) nor otherwise random (e.g., it cannot be irreducible). Both
of these flaws are critical. The larger the degree of the share polynomial, the more players that are
needed to recover the secret, so it is essential that the degree not increase with each multiplication.
If the share polynomials are not fully random, then information about the secrets may be leaked
to fewer than ¢ 4+ 1 computationally unbounded agents.

One of the main trends of the non-cryptographic computation protocols described in this paper
follow from this “close call.” Computation in Stage 2 proceeds directly on shares of secrets, with
occasional interaction to “clean up” shares after multiplication.

Another main trend arises from this first one when the adversary is active. If interaction is
required for multiplications, then how can the honest players protect themselves against misleading
interaction coordinated by an active adversary? The solutions to this problem depend on the level
of resilience that is required. If fewer than one-third of the players are faulty, then error-correcting
codes can be exploited [20]. For greater resilience, new techniques of verifiable secret sharing [85]
can be used. These new techniques can require more interaction among players, even for linear
operations.

In this subsection, we will survey some of the non-cryptographic secure distributed computation
protocols that have been developed. As in the previous section, some protocols are accompanied by
a table that summarizes important features. In these tables, the number of players in the protocol
is denoted by n, the size of a circuit is denoted by C, and the depth of a circuit is denoted by D.
All protocols in this section provide computation over a finite field (usually GF(p) for some prime
p, occasionally GF(2F), and rarely GF(p*) for some prime p # 2); we assume that it takes log |F|
bits to communicate an element of the finite field F.
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Channel: complete private network
Adversary: t passive, t < n/2
Security: unconditional

bit complexity: O(n®Clog|F))
round complexity: O(D)

Table 6: Summary of Ben-Or, Goldwasser, and Wigderson 1988 (passive adversary)

6.2 Non-cryptographic Protocols versus Passive Adversaries

The first two papers suggesting general non-cryptographic distributed computation are by Ben-Or,
Goldwasser and Wigderson [20], and by Chaum, Crépeau, and Damgard [35]. Both papers present
protocols for ¢-private computation whenever n > 2t. Provided that all players obey the protocols
perfectly, no minority of players can pool their knowledge at the end of the protocol to gain further
information about the honest players’ inputs. In this subsection, we will describe both of these
protocols.

Ben-Or, Goldwasser, and Wigderson [20] present a protocol which allows ¢-private computation
among 2t + 1 players without any cryptographic assumptions. A network of private channels
connecting all players is required.

This protocol, as with all protocols developed thus far for the non-cryptographic setting, is
based on Shamir’s method for secret sharing. Each player i shares its secret input s; with the
other players by giving each other player j a single point p;(c;) on an otherwise random degree ¢
polynomial p;(z) such that p;(0) = s;. For simplicity, assume that o; = ¢ for all 4, 1 < ¢ < n. Any
arbitrary linear combination A(sy,- - -, s,) of secret inputs can then be performed by the players
without any communication, as described at the start of this section.

Since arbitrary linear computations can be performed directly on ¢-shares without communica-
tion, it suffices to show how multiplication of shared secrets can be performed. For this operation,
some communication is needed. If each player multiplies together its shares of the multiplicands,
then, analogous to the linear case, each player arrives at a value on a polynomial that passes through
the product at the origin. However, this polynomial that “almost-shares” the product is neither
random nor of the right degree. It is a degree 2t polynomial that has a certain structure, e.g., it
cannot be irreducible. The clever subprotocol for multiplication uses communication to eliminate
this structure.

Suppose that the multiplication subprotocol begins with each player 7 holding the share p(%)
of the secret s = p(0) and the share p’(7) of the secret s’ = p’(0), where p and p' are otherwise
random degree ¢t polynomials. Let B be the n by n (vandermonde) matrix whose (%, ) entry is
ji. Let Chop; be the n by n matrix whose (i, ) entry is 1if 1 < i = j < ¢ and 0 otherwise. The
subprotocol is as follows:

1. Each player 7 privately finds an otherwise random degree ¢ polynomial r;(z) with constant
term zero.

2. Each player ¢ sends to each player j the value r;(7).
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Channel: complete private network
Adversary: t passive, t < n/2
Security: unconditional
bit complexity: O(n?Clog |F|)

roundcomplexity: O(D)

Table 7: Summary of Chaum, Crépeau, and Damgard 1988 (passive adversary)

3. Each player 4 privately finds v; = p(2)p'(z) + >_7—; 75 (%)

4. The players cooperate to give each player ¢ the ¢th component of
(viva - - -v,)B~1Chop; B, as follows:

(a) Each player ¢ privately finds an otherwise random degree ¢ polynomial g;(z) such that
¢:(0) = v;.

(b) Each player ¢ sends to each player j the value v;; = ¢;(j).

(c) Each player i privately finds (wy;wa; - + - Wn;) = (v13v2; + - - Un) B~ Chop; B

(d)

)

d

(e) Each player ¢ privately interpolates to find the value at 0 of the degree ¢ curve through
(1,wi1), (2, wia), - - -, (», win). This is the desired share at 7 of the product of s and s'.

Each player ¢ sends to each player j the value wj;.

Notice that this subprotocol for multiplication first re-randomizes the intermediate degree 2t
polynomial (by adding random polynomials with zero constant term), and then truncates its degree
down to ¢ (by multiplying by B~'Chop;B. Since this truncation step is itself a linear operation, it
can be computed privately on shares of the “almost-shares” (step 4c).

Chaum, Crépeau, and Damgard present a protocol that also allows t-private computation among
2t 4+ 1 players without any cryptographic assumptions, also assuming a network of private channels
connecting all players. In fact, this protocol has some similarities to that of Ben-Or, Goldwasser,
and Wigderson, although the computation proceeds bit by bit here, on a circuit composed of AND
gates and XOR gates over GF(2F).

Assume that each player has some input bits, and that the function to be computed is repre-
sented as a circuit composed of AND gates and XOR gates. Each player {-shares his input bits
using Shamir polynomials over a finite field that is a power of two (i.e., GF(2I") for some k such
that 2% > n). Then XOR in this protocol becomes analogous to addition in the previous protocol,
while AND becomes analogous to multiplication.

Each XOR gate can be computed privately without any interaction. Each player simply adds
its ¢-shares of the corresponding inputs, and arrives at a valid ¢-share of the output. Notice that the
new share lies on a polynomial that passes through the XOR at zero only because the underlying
field was chosen to be a power of two.

Each AND gate can “almost” be computed by having each player multiply its two ¢-shares of
the corresponding inputs. As before, the resulting values are on a polynomial that passes through
zero at the right place, but which is non-random and of twice the desired degree. Chaum, Crépeau,
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Channel: complete private network
Adversary: t active, t < n/3
Security: unconditional

Error Prob: Zero
bit complexity: O(n°Clog |F|)
roundcomplexity: O(D)

Table 8: Summary of Ben-Or, Goldwasser, and Wigderson 1988 (active adversary)

and Damgard have an interesting method for the interactive “re-randomization” and “truncation”
steps for repairing these values, doing both of these steps simultaneously.

After the private multiplication, when each player has an “almost-share” of the AND result, the
players proceed as follows. Each player chooses two otherwise random polynomials, one of degree
t (“low-degree”) and one of degree 2t (“high-degree”), such that either both have constant term
zero or both have constant term one. Each player distributes shares of both polynomials. Then
each player adds its “almost-share” of the AND computation to the sum of the high-degree shares
it has just received. This yields valid 2¢{-shares of an XOR of random values with the AND result.
The players reveal these shares and determine what this XOR is. If it is zero, then the XOR of the
random values is equal to the AND result; in this case, the sum of the low-degree shares for each
player is the valid ¢-share of the AND result. If it is one, then the XOR of the random values is the
opposite of the AND result; in this case, one plus the sum of the low-degree shares for each player
is the valid t-share of the AND result.

6.3 Non-cryptographic Protocols versus Active Adversaries

In this subsubsection, we will cover four non-cryptographic protocols for distributed computation
versus an active adversary. The first two [20] [35] achieve t-resilience whenever there are n > 3t
players, assuming a complete private network of channels. The last two [86] [9] achieve ¢-resilience
when n > 2t, but require a broadcast channel in addition to a complete private network, and must
allow a small probability of error.

In the same paper that gave the protocol for ¢-private computation when n > 2t (described
in the preceding subsection), Ben-Or, Goldwasser and Wigderson [20] also demonstrated that ¢-
resilient computation was possible for n > 3t. The resilient protocol is identical to the private
protocol except for changes to the secret-sharing method and to the multiplication stage.

The verifiable secret sharing scheme outlined in Section 2.1.6 is used in place of simple secret
sharing. Furthermore, instead of having player 7 receives values at some arbitrary o; (e.g., o = 1),
this protocol requires that each player receive values at a specific nth root of unity. For example,
once a player begins the VSS protocol by choosing a polynomial f(z,y) whose constant term is the
secret, then each player ¢ receives the polynomials f(z, w") and f (wi, y), where w is a predetermined
primitive nth root of unity (and where the actual share for player i is f(w?,0)).

The importance of this choice for share locations is that the vector of n shares of any secret
is a codeword of a generalized Reed-Muller error-correcting code [22]. This family of codes can
correct a codeword in which up to one-third of the components are incorrect or missing. For our
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purposes, this means that the n — ¢ honest players can reconstruct a shared secret after ¢ arbitrary
shares are corrupted by an active adversary. Furthermore, the correction procedure involves only
the computation of 2t linear combinations of codeword components (called “syndromes”); thus
correction may be performed privately on shares of codewords.

The multiplication phase differs from the private protocol in two ways. Re-randomization
requires that each player distribute shares of an otherwise random degree 2t polynomial with
constant term zero. For purposes of resilience, the honest players must be able to prove that the
shares that are received are in fact from polynomials of this form. There is a protocol for doing
this, based on the fact that degree ¢ polynomials can be so verified, and that a share of an otherwise
random degree 2¢ polynomial with zero constant term can be constructed privately from shares of ¢
random degree ¢ polynomials. Beaver [9] has observed, however, that this extra effort to randomize
the higher-degree coeflicients is wasted, since these will disappear after truncation anyway.

The second difference is in the truncation step. A subprotocol is inserted to force all players
to “validate” their inputs to the degree truncation step. Recall that each player shares its share
of the product, so that a linear combination of the first-level shares can be performed privately by
each player on the second-level shares. The honest players need to be sure that these second-level
shares are in fact honest shares of the first-level shares.

Suppose that each player i begins a multiplication phase with the ¢-shares p(w®) and p’(w?) of
the original multiplicands p(0) and p’(0). After re-randomization, suppose that each player ¢ has a
2t-share g(w?) of the product ¢(0) = p(0)p'(0).

Each player 7 begins by distributing ¢-shares of p(w') and of p/(w?). This gives each player a
share of two codewords. Using the linear error correction procedure for this coding scheme, each
player can compute shares of the 2t syndromes for the two codewords. The players reveal these
shares, reconstruct the syndromes, and use the syndromes to find the right value for each incorrect
p(w") or p' (w’) For each such incorrect value, each player can replace the corresponding share
with the correct value itself (essentially forcing that player to have used the constant polynomial
to share its share).

At this point, all honest players are convinced that all shares of shares of p(0) and p’(0) are
correct. Now each player needs to distribute ¢-shares of its 2¢-share of the actual product p(wi)p' (w"),
in such a way that the honest players are convinced that the proper product relation in fact holds
among the three shares. This can be done by private computation on shares of ¢ + 1 (verifiably)
degree t polynomials, in a manner similar to that used in the re-randomization step.

Chaum, Crépeau and Damgard [35] also give a protocol for t-resilient computation whenever
n > 3t. There are several important similarities with the protocol of Ben-Or et al. First, this
protocol also adapts a privacy-only protocol by overlaying verifiability subprotocols. Second, an
important part of both protocols is that players operate on shares of shares of secrets. This is a
technique that was first used in the cryptographic setting by Galil, Haber, and Yung [55] to tolerate
faults without revealing inputs of faulty parties.

There are also some significant differences between the two solutions. The protocol of Chaum,
Crépeau, and Damgard relies on an interactive “cut-and-choose” procedure to validate that all of
the shares of a secret are consistent with one another, i.e., that all n values lie on a single degree ¢
polynomial. Unlike the protocol of Ben-Or et al., which used error-correcting codes for this purpose,
this leaves an exponentially small probability of undetected cheating. This also makes the protocol
less efficient in terms of number of rounds and messages.
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Channel: complete private network, plus broadcast
Adversary: t active, t < n/2
Security: unconditional
Error Prob: 0(27%)
bit complexity: O(n®k3|F|*log|F))
round complexity: O(D)

Table 9: Summary of Beaver 1989 / Rabin and Ben-Or 1989

Since Byzantine Agreement requires that more than two-thirds of the players be honest, these
two resilient protocols [20] [35] are the best possible for a network of private channels in the non-
cryptographic setting. One natural question is whether the resilience can be increased by adding a
broadcast channel.

The affirmative answer was supplied T. Rabin and Ben-Or [86], and by Beaver [9], both building
on ideas from T. Rabin [85].

At the heart of the protocol is a verifiable secret sharing scheme, due to T. Rabin [85], that can
correct up to t errors where n > 2t, by giving up on absolute certainty of success. This scheme has
a probability of failure that is exponentially small with respect to a security parameter. This VSS
scheme also requires the existence of a broadcast channel.

One key idea in the VSS method is that of “information check vectors.” This is a primitive for
message sending involving three parties: a dealer D, a receiver R, and an intermediary INT. The
basic protocol is as follows (with computation over GF(p) for some prime p). If D has a secret s to
send to R, then D begins by choosing random b and y. D then sends the pair (s,y) to INT, and D
sends the pair (b,c = s + by) to R. At a later moment, INT forwards to R the pair (s, y) received
from D. R accepts the message s if and only if ¢ = s + by.

Using check vectors, a weaker form of secret sharing (called “weak secret sharing”) can be
implemented. This is a protocol that behaves like verifiable secret sharing when the dealer is
honest, and which provides limited protection against a dishonest dealer. The secondary weak
sharing of Shamir shares is part of Rabin’s VSS scheme.

Because of the secondary sharing, Rabin’s VSS scheme does not have the same homomorphic
properties as Shamir’s basic secret-sharing scheme, i.e., shares of linear combinations of secrets can-
not be determined through private computation on the original shares. However, with interaction,
Rabin shows that there is a t-resilient protocol to give each of n > 2t players the appropriate share
of any linear combinations of secrets.

Using the protocol for linear combination, a protocol is given to ¢-resiliently demonstrate that
one secret c¢ is the product of two other secrets ¢ and b. In other words, if a, b, and ¢ have each
been shared by Rabin’s VSS scheme by one player, and if ¢ = ab, then that player can convince
the honest players of this fact without revealing anything further about the three secrets. This is
done by a type of cut-and-choose protocol. A number of equalities related to the original secrets,
of the form D = (a + R)(b+ S), are chosen by the verifier; for each such equality, the values R,
S, and D are verifiably shared; some of these triples are challenged; those that are challenged are
revealed to demonstrate that the corresponding equalities are indeed correct; those triples that are
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Channel: complete private network
Adversary: t active, t < n/3
Security: unconditonal

Error Prob: Zero
bit complexity: poly(C, n, |F|)
roundcomplexity: 0(1)

Table 10: Summary of Bar-lIlan and Beaver 1989

not challenged are combined with the original three secrets to demonstrate that the equalities are
indeed related to the original secrets. The probability of undetected cheating is bounded by 27,
where k is the number of triples that are used by the verifier.

The t-resilient protocol for linear combination also implies a t-resilient protocol for degree
truncation. In other words, if each player holds a share of a degree 2¢ polynomial p(z), then this
protocol ends with each player holding a corresponding share of a degree ¢ polynomial p(z) with
the same coeflicients for all of its terms. Each output share is in fact a specific linear combination
of the input shares: p(e;) = 3% ; L;(o;)p(;), where L;(z) is the (publicly computable) degree ¢
truncation of the Lagrange polynomial which is one at o; and zero at aj, j # i.

Re-randomization is straightforward, due to Beaver’s observation [9] that the only coefficients
that need to be randomized are those that will survive the truncation step. Each player ¢ can
verifiably t-share a random value using a polynomial p;(z). If each player j now multiplies each
received share p;(a;) by its own share location ¢, then it obtains a valid (¢4 1)-share of zero. The
sum of all of these (¢ + 1)-shares is a point on an otherwise random degree t + 1 polynomial with
constant term zero.

Using the t-resilient protocols for product demonstration, re-randomization, and degree trunca-
tion, a t-resilient protocol for multiplying two shared secrets is possible. First, each player verifiably
t-shares three values: its shares of the two secrets, and the product of its shares of the two secrets.
Second, each player t-resiliently demonstrates that the proper product relation holds among these
three shared values. Finally, the players perform the ¢-resilient protocols for re-randomization and
truncation.

6.4 Constant-Round Non-cryptographic Computation

One of the open problems in secure distributed computation is whether O(n)-resilience is possible
in constant rounds and polynomial-sized messages in the non-cryptographic setting. This section
presents some of what is currently known about constant-round non-cryptographic computation
versus an active adversary.

Bar-Ilan and Beaver [5] demonstrate that, even in the absence of cryptographic assumptions,
the number of rounds of communication needed for secure distributed computation of a function
need not be related to the depth of the arithmetic circuit for that function. Bar-Ilan and Beaver
show how to compute any NC? circuit in constant rounds and polynomial-sized messages.

One of the key ideas in this protocol is the use of a technique, due to Ben-Or and Cleve [19],
for mapping an arbitrary arithmetic function to the multiplication of a string of three by three
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Channel: complete private network
Adversary: t active, t < clogn
Security: unconditional

Error Prob: Zero
bit complexity: poly(n,log|F|)
roundcomplexity: 0(1)

Table 11: Summary of Beaver, Feigenbaum, Kilian and Rogaway 1989

matrices. By a self-randomization trick (similar to the method used by Kilian for the two-party
case [70]), this long product of matrices can be securely computed using only two secret matrix
multiplications:

Y = MiM,---My = Ro(Ro"*MiR)) (R, MyRy) - - - (Ry_1 *MyRy)RN~!

= ROZRN_l.

Thus, if the players jointly create and share random invertible matrices Ry, --, Ry, they can
compute each S; = R;_1 ' M;R; in parallel by private computation, public revelation, and inter-
polation. From these they can find Z = 5153 --- Sy, and then two secret multiplication will find
Y = RoZRn"".

When f is not NC!, the function can still be securely computed in constant rounds, but
with messages that are not necessarily polynomial in size. Alternatively, using their technique, an
arbitrary function can be securely computed in D/ logn rounds, where D is the circuit depth, using
polynomial-sized messages.

Beaver, Feigenbaum, Kilian, and Rogaway [12] show how to achieve non-cryptographic com-
putation of boolean circuits of any size in constant rounds with polynomial-sized messages, by
decreasing the resilience to O(logn) faulty processors.

The method relies on an instance-hiding scheme for any boolean function using n/logn + 1
oracles. This can be converted into an n + 1 oracle instance-hiding scheme that is (logn)-private,
by replacing each oracle query at by n + 1 oracle queries at (logn)-shares of .

The method also relies on the constant-round poly-sized computation of functions with log-depth
circuits [5]. Creation of appropriate oracle queries, polynomial interpolation, notarized envelope
schemes, and majority-voting all have log-depth circuits, and so all are available as subprotocols in
this way.

Lastly, Beaver, Micali, and Rogaway [14] show that constant-round poly-sized computation,
resilient for a constant fraction of faulty processors, is achievable assuming that one-way functions
exist. The protocol, a generalization of the two-party protocol due to Yao [95] described in Section
2.3.2, has the players construct a scrambled version of the circuit, from which each player can
compute the output on its own. Although the scrambled circuit is consistent with only one set of
values of the secret inputs, conditional privacy is established through the use of a pseudorandom
generator (i.e., one-way function) to hide connections between scrambled gates. Because of the
reliance on one-way functions (along with a broadcast channel and a network of private channels),
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Channel: private network, plus broadcast
Adversary: t active, t < n/3
Security: one-way function (i.e., pseudorandom generator)
Error Prob: 0(27%)
bit complexity: poly(C,n, k,log|F|)
roundcomplexity: 0(1)

Table 12: Summary of Beaver, Micali, and Rogaway 1990

Channel: complete private network
Adversary: c passive, d active, n > 2d 4 ¢, n > 2¢ (or cryptosystem secure)
Security: uncond if ¢ < n/2; trapdoor perm + claw-free func if n/2 <t < n
Error Prob: 0(27%)
bit complexity: poly(C,n, k,log|F|)
roundcomplexity: O(D)

Table 13: Summary of Chaum 1989

this is actually a cryptographic protocol. However, its relevance is clearer when mentioned along
with other constant-round results.

In addition to one-way functions, this protocol requires a broadcast channel and a network
of private channels, and allows an exponentially small probability of error. The only use of one-
way functions is to guarantee the existence of pseudorandom generators, an equivalence shown by
Impagliazzo, Levin and Luby [66] and Hastad [63].

6.5 Hybrid Computation Protocols

Chaum [34] combines both non-cryptographic and cryptographic computation into a single hybrid
protocol. The security of this protocol is compromised only if both a majority of the players are
faulty and the underlying cryptographic assumptions are violated.

The key idea is to transform the m-ary function evaluation f(s1,---,s,) into an (n + 1)-ary
function evaluation f*(s; @ 71, -+, 8, @ rp,71 0 ---01y,)), where o denotes concatenation. Here
each player 7 chooses the random r;. The computation of f* is performed using the cryptographic
protocol of Chaum, Damgard, and Van de Graaf [36] (see Section 2.4.3), where all n players jointly
determine all messages sent by player n+ 1. They do this by running a non-cryptographic protocol
(e.g., [35]) whenever a message from this “player” is needed.

Recall from Section 2.4.3 that the cryptographic protocol of Chaum, Damgard, and Van de
Graaf can protect one player’s input unconditionally; here this protection is granted to the jointly
maintained player. Thus breaking the outer cryptographic protocol reveals only the first n inputs,
each of which is a secret xored to a random value. To determine these random values requires
breaking the inner non-cryptographic protocols as well. Alternatively, breaking only the inner

37



non-cryptographic protocol reveals only information about the random values, which yields no
information about the original secrets.

6.6 Non-Cryptographic Computation Protocols on Incomplete Networks

All of the non-cryptographic protocols described in this subsection thus far have required that the
network of private channels connecting the players be complete. It is interesting to consider what
weaker assumptions on the private network will still allow secure distributed computation without
cryptographic assumptions.

Rabin and Ben-Or [86] show how to perform any secure distributed computation ¢-resiliently in
a network of at least 3¢ 4 1 players, if the players are joined by a network of private channels with
connectivity at least 2¢ + 1. This is done by showing how to send a message from any player to any
other player through such a network, in expected time equal to the diameter of the network, and
with a slight probability of error. This capability can be spliced into previously discussed protocols
to achieve the stated result.

Dolev, Dwork, Waarts, and Yung [48] show how to attain the same result without any proba-
bility of error. Sending a message from any player to any other player (“perfectly secure message
transmission”) is divided into two problems: the slightly easier problem of sending a one-time ran-
dom pad, and the much easier problem of sending the message xored with the one-time pad. The
second problem just requires that the encrypted message be sent simultaneously along all 2t + 1
paths, whereupon the receiver decrypts the majority message. The first problem requires that
each bit of random pad be transmitted via an interactive protocol. To transmit one random bit, a
three-phase protocol is used in which shares of nt + 1 bits and associated checking pieces are sent
along different paths from sender to receiver. No amount of cheating by the ¢ faulty players can
prevent the sender and receiver from agreeing on one of the 2¢{ 4+ 1 random bits that is guaranteed
to be uncorrupted, or allow the faulty players to learn the value of that bit.

6.7 Non-Cryptographic Protocols versus Mobile Adversaries (Virus Model)

Ostrovsky and Yung [83] consider a more powerful adversary that models the behavior of a (de-
tectable) virus in a computer network (with rebootable machines): a different set of up to ¢ players
can be under the adversary’s control each round. They present a non-cryptographic computation
protocol secure against such an adversary where ¢ is some constant fraction of the number of play-
ers. One of the features of this protocol is that all of the information held secret by the players
must be continually reshared, so that the mobile adversary never gets enough consistent shares of
any secret to recover it.

6.8 Non-Cryptographic Asynchronous Computation

Ben-Or, Canetti and Goldreich [16] study secure computation among processors connected by a
complete asynchronous network of untappable channels. If only crash failures are allowed (Fail-Stop
faults), they show how to compute securely any function over a finite field while withstanding up to
[3]— 1 faulty processors. If arbitrary failures are allowed, they show how to compute any function
over a finite field ([7]| — 1)-resiliently. One of the tools they use for these results is a verifiable

secret sharing scheme in the asynchronous model for n > 4t + 1, with zero probability of error.
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7 Reductions and Complexity Results

Previous subsections have contained descriptions and discussion of what is possible for secure dis-
tributed computation. This subsection will survey what is known about reductions and complexity
results for this problem, i.e., what is just as hard as, and what is impossible for, secure distributed
computation.

7.1 Reductions Among Primitives

Kilian [71] shows how to base two-party oblivious circuit evaluation on a black box for Oblivious
Transfer. A sketch of this important reduction was given in Section 2.3.2. In later work [72],
Kilian extends the reduction by establishing a necessary and sufficient condition for basing two-
party oblivious circuit evaluation on a black box for securely computing some 2-ary function F.
Specifically, he proves that Oblivious Transfer can be implemented from a black box for securely
computing F' if and only if F possess an “imbedded OR,” i.e., that there exists i, 21, jo, J1, Zo, Z1
such that for all a,b € {0,1}, F(is, %) = Tavs-

Ostrovsky, Venkatesan, and Yung [81] consider the problem of sufficient conditions for various
“asymmetric” two-party protocols, i.e., protocols in which one player is polynomially bounded
while the other player is computationally unbounded. In particular, they show that Oblivious
Transfer is possible, in either direction, assuming the existence of one-way functions. Since Kilian
[70] reduces two-party circuit evaluation to Oblivious Transfer, it follows that any asymmetric
two-party computation is possible if one-way functions exist.

The idea of the results of Ostrovsky, Venkatesan, and Yung may be conveyed by considering a
weaker version of one direction: Oblivious Transfer from an unbounded player to a bounded player
under the assumption that one-way permutations exist. The weaker player chooses a random n-bit
element ' and finds ¢ = o(z'), where o is a one-way permutation. The weaker player conveys to
the stronger player n — 1 bits of information, one at a time, about the range value (by answering
n — 1 queries for inner products of random strings with z); each answer reduces the domain of
initial choices, ultimately arriving at a set containing the real choice and one additional possible
value. The stronger player now guesses at random among the two possible remaining choices for
z, and inverts the one-way permutation at that guessed value. This inverted value is either z’ or
some value the weaker player cannot compute. By hiding his secret using the inverted value (i.e.,
by xoring it with an inner product of the inverted value and a public random value), the weaker
player can recover the secret exactly half the time.

For the symmetric case, Impagliazzo and Luby [67] show that one-way functions are necessary
for bit commitment, and hence necessary for secure computation. This paper also shows that
Oblivious Transfer implies the existence of one-way functions. However, due to a relativization
result from Impagliazzo and Rudich [68], it is unlikely that the sufficiency of one-way functions for
secure symmetric computation can be shown (i.e., a proof that only used one-way functions in a
“black-box” manner would prove P # N P).

Ostrovsky and Yung [82] demonstrate the necessity of a complete network of private channels
for implementing private multiparty computation among computationally unbounded players (suf-
ficiency was shown by [20] and [35]). They consider the problem of dealing one card from a four
card deck to each of three players. If one of the channels between two players is insecure (i.e.,
accessible to the third player), then some information about the distribution of the cards must be
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leaked.

7.2 Necessary Conditions and Resources

The first complexity results in this field are two impossibility results due to Yao [94], one for a
certain type of two-player secret exchange (swapping zeros of trapdoor functions), and the other
for the generation of an arbitrarily biased bit by many players.

Ben-Or, Goldwasser, and Wigderson [20] provide matching lower bounds for multiparty non-
cryptographic computation on a network of private channels, for both passive and active adversary.
For a passive adversary, there are functions for which there is no ¢-private protocol among n players
when n < 2t; e.g., the impossibility of a 1-private protocol for two parties to compute the OR of
two bits is easy to verify. For an active adversary, there are functions for which there is no t-private
protocol among n players when n < 3t; this follows directly from the lower bound for Byzantine
Agreement [74].

For the case of a passive adversary, more is known about when a function does or does not have
a t-private protocol among n players when n < 2¢. Chor and Kushilevitz [47] find a “gap” in the
maximum level of privacy, in the non-cryptographic zero-error setting for boolean functions. If a
function has a t-private protocol, n < 2¢, then it has an (n — 1)-private protocol. Moreover, every
such m-ary function is equivalent to an xor of n single-input functions.

For the case of an active adversary, Cleve [40] has impossibility results for the much simpler
problem of computing a single random bit. When at least half of the processors are faulty, it
is impossible to compute a random bit in polynomial time with a negligible bias (less than the
reciprocal of any polynomial in the number of players).

For two player non-cryptographic protocols, a complete characterization of privately computable
general functions (i.e., non-boolean) is given independently by Kushilevitz [73] and by Beaver [8].
A function is privately computable if and only if it is “partitionable.” Consider the tabular form
of a two-input function f(z,y), with each row corresponding to a different possible value for z,
each column to a different possible value for y, and each entry representing the value of f at those
inputs. Call a function “column-partitionable” if the columns of the table can be divided into
two subsets such that no range value appears in both parts; define “row-partitionability” similarly.
Consider that either kind of split turns one function into two functions, each defined over part of
the domain of the original. A function is “partitionable” if it is constant (all table entry are the
same), or if it is row-partitionable into two partitionable functions, or if it is column-partitionable
into two partitionable functions.

For example, the function f(z,y) = max(1,z? mod 5,y) defined on the domain {0,1,2,3} x
{0,1, 2,3} is partitionable, and hence privately computable (see Figure 1). However, the function
g(z,y) = min(1,22 mod 5,y) defined on the same domain is not partitionable, and hence not
privately computable (see Figure 2).

Bar-Yehuda, Chor, and Kushilevitz [7] consider two-party “nearly private” computation pro-
tocols for functions that are not partitionable; a “nearly private” protocol leaks some information
about private inputs to the opposing player. Their formal definition of information leakage is similar
to the notion of information leakage used by Abadi, Feigenbaum, and Kilian [1] for characterizing
instance-hiding schemes. Bar-Yehuda, Chor, and Kushilevitz show that the identity function and
the greater-than function can be computed leaking at most logn bits of information, and that
almost all boolean functions can be computed leaking at most 3(n — logn — 3) bits of informa-
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Figure 1: Tabular form of f(z,y) = max(1,z% mod 5,y) on {0, 1,2, 3}?

x/y|0|1|2]|3
0 0j0|0]O0
1 0j1(1]|1
2 0(1(1]|1
3 0j1(1]|1

Figure 2: Tabular form of g(z,y) = min(1,z? mod 5,y) on {0, 1,2, 3}2

tion. They also construct functions for which large gains in round complexity are achievable by
leaking small amounts of information; for one artificial example, exponential round complexity can
be reduced to two rounds and linear number of bits of communication by revealing a single bit of
information about the inputs.

All of the results in this paper assume that the computation is performed over some finite field.
Chor, Gereb-Graus, and Kushilevitz consider the case of private multi-party non-cryptographic
computation over countable domains. They show that every m-ary boolean function is either n-
private, L%J—private but not |3 ]-private, or not 1-private. Their results follow from establishing
a connection between private computability and communication complexity as defined by Yao [93].
As a surprising special case, private addition over a finite subrange of integers can be n-private,
over the positive integers can be at most L%J—private, but over all the integers cannot even be
1-private.

Dolev, Dwork, Waarts, and Yung [48] give lower bounds on security versus connectivity for the
simpler but related problem of perfectly secure message transmission through an untrusted network.
They consider this problem in a setting that generalizes in two ways on the setting considered for
the multi-party unconditional protocols in this paper: (1) there are two adversaries, one passive and
one active, which control possibly overlapping sets of faulty processors, and which may or may not
be able to communicate during execution; and (2) they assume an incomplete network, of known
degree.

8 Discussion and Open Problems

In the past few years, much progress has been made in understanding the problem of secure dis-
tributed computation. General-purpose protocols have been constructed for a wide variety of set-
tings, including many that achieve the provably best bound for some resource. Progress toward a
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satisfactory model for the problem — one that is comprehensive, rigorous, and usable — has perhaps
been less dramatic. Some models have been proposed, but no clear favorite has yet emerged.

One important open problem is general constant-round non-cryptographic secure distributed
computation with polynomial-sized messages. The problem has been solved for functions with log-
depth circuits [5], or allowing exponential-length messages [5], or by reducing the resiliency [12], or
by assuming the existence of one-way functions [14].

Another open question is the characterization of privately-computed multi-input functions. The
two-input privately-computable functions have been completely characterized [8] [73].

A third open question is a more general question of efficiency. Most of the secure distributed
computation schemes described in this paper are designed to be applicable to any possible function.
For this reason, these schemes are possibly impractical to apply to any actual function that might
arise in a setting where secure distributed computation was desired. One example is for distributed
databases, where data stored at mutually untrustworthy sites may be needed to answer relational
queries. A second example is for signal processing, where model-based conclusions may be sought
from sensor data collected by mutually untrustworthy agencies. A third example is multi-criterion
decision-making (generalized voting), where individual rankings are kept confidential while some-
how merged into an acceptable aggregate ranking. A fourth example is after-hours financial trading
systems, where individual bids and offers must be matched fairly while balancing trader privacy
with regulatory oversight. It may be necessary to discover special-purpose efficient computation
protocols for such specific settings before the beautiful ideas discussed in this paper achieve their
full potential.
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