
Stackelberg Games for Adversarial Prediction Problems

Michael Brückner
Department of Computer Science
University of Potsdam, Germany

mibrueck@cs.uni-potsdam.de

Tobias Scheffer
Department of Computer Science
University of Potsdam, Germany

scheffer@cs.uni-potsdam.de

ABSTRACT
The standard assumption of identically distributed training
and test data is violated when test data are generated in
response to a predictive model. This becomes apparent, for
example, in the context of email spam filtering, where an
email service provider employs a spam filter and the spam
sender can take this filter into account when generating new
emails. We model the interaction between learner and data
generator as a Stackelberg competition in which the learner
plays the role of the leader and the data generator may react
on the leader’s move. We derive an optimization problem
to determine the solution of this game and present several
instances of the Stackelberg prediction game. We show that
the Stackelberg prediction game generalizes existing predic-
tion models. Finally, we explore properties of the discussed
models empirically in the context of email spam filtering.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical ; H.4.3
[Information System Applications]: Communications
Applications—electronic mail

General Terms
Theory, Algorithms

Keywords
Adversarial Classification, Stackelberg Competition, Predic-
tion Game, Spam Filtering

1. INTRODUCTION
A common assumption on which most learning algorithms

are based is that training and test data are governed by iden-
tical distributions. However, in a variety of applications, the
distribution that governs data at application time may be in-
fluenced by an adversary whose interests conflict those of the
learner. Consider, for instance, the following three scenar-
ios. In computer and network security, scripts that control

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

attacks are engineered with botnet and intrusion detection
systems in mind. Credit card fraudsters adapt their unau-
thorized use of credit cards—in particular, amounts charged
per transactions and per day and the type of businesses
that amounts are charged from—such as not to trigger alert-
ing mechanisms employed by credit card companies. Email
spam senders design message templates that are instantiated
by nodes of botnets; templates are specifically designed to
produce a low spam score with current spam filters. The
domain of email spam filtering will serve as a running exam-
ple throughout the paper. In all of these applications, as-
sailants factor information about countermeasures that are
being employed into the process of data generation.

The interaction between learner and data generators can
be modeled as a game in which one player controls the pre-
dictive model whereas another exercises some control over
the process of data generation. The adversary’s influence
on the generation of the data can be mathematically mod-
eled as a transformation that is imposed on the distribution
that governs the data at training time. The transformed
distribution then governs the data at application time. The
optimization criterion of either player takes as arguments
both, the predictive model chosen by the learner and the
transformation carried out by the adversary.

Typically, this problem is modeled under the worst-case
assumption that the adversary desires to impose the highest
possible costs on the learner. This amounts to a zero-sum
game in which the loss of one player is the gain of the other.
In this setting, both players can maximize their expected
outcome by following a minimax strategy. El Ghaoui et
al. [5] derive a minimax model for input data that are known
to lie within some hyper-rectangles around the training in-
stances. Their solution minimizes the worst-case loss over
all possible choices of the data in these intervals. Lanck-
riet et al. [10] study the minimax probability machine. This
classifier minimizes the maximal probability of misclassify-
ing new instances for a given mean and covariance matrix
of each class. Geometrically, this solution corresponds to a
minimax strategy with hyper-ellipsoids around the training
instances, rather than hyper-rectangles. Similarly, worst-
case solutions to classification games in which the adversary
deletes input features or performs arbitrary feature trans-
formation have been studied [3, 6, 7, 14, 4].

Several applications motivate problem settings in which
the goals of the learner and the data generator, while still
conflicting, are not necessarily entirely antagonistic. For in-
stance, a fraudster’s goal of maximizing the profit made from
exploiting phished account information is not the inverse of

an email service provider’s goal of achieving a high spam
recognition rate at close-to-zero false positives. When play-
ing a minimax strategy, one often makes overly pessimistic
assumptions about the adversary’s behavior and may not
necessarily obtain an optimal outcome.

For games that do not exhibit the zero-sum property, a
game-theoretic model has been studied that assumes both
players to commit to their actions simultaneously [1]; that
is, without information about the opponent’s course of ac-
tion. When the parameter space of the learner’s model and
the adversary’s transformation and both players’ loss func-
tions satisfy specific criteria (e.g., the loss functions have to
be monotonic with distinct monotonicity and twice differen-
tiable), then the prediction game has a unique Nash equilib-
rium that can be found by solving a compact optimization
problem [1]. The Nash equilibrium is a combination of pa-
rameters for the predictive model and the adversary’s trans-
formation which has the property that neither player bene-
fits by unilaterally deviating from it. For the learner, playing
the Nash equilibrium instead of the minimax strategy is an
optimal course of action under the following sufficient con-
ditions: First, the adversary has to be trusted to behave
rationally in the sense of maximizing their profit by playing
a Nash strategy, too. If the learner plays the Nash equi-
librium but the adversary deviates from that equilibrium,
then both players may fare arbitrarily poorly. Secondly, a
unique equilibrium needs to exist, since a combination of ac-
tions from two distinct equilibria may lead to an arbitrarily
poor outcome for either player. Thirdly, the adversary must
not have any information about the predictive model that
the learner commits to before generating the data. In prac-
tice, this assumption can be violated when the adversary is
able to probe the predictive model. If the adversary violates
either of the above three conditions, no guarantees on the
optimality can be given and, consequently, a learner may be
ill-advised to play the Nash equilibrium.

In practice, a spam sender may follow heuristics derived
from past experience and experiments with the filter. Such
a setting in which both players act non-simultaneously can
be modeled as a Stackelberg competition which allows one
player—the follower—to be potentially fully informed about
the move of the other player—the leader. We model ad-
versarial learning as a Stackelberg competition in which the
learner acts as leader by committing to a predictive model in
the first step. The model is then disclosed to the follower—
the data generator—who then gets to transform the input
distribution.

Some authors [9, 12] study the case in which the data
generator acts as leader and the learner as follower. This
reflects a setting in which the adversary discloses how the
future distribution will differ from the current distribution
before the learner has to commit to a model, which contra-
dicts the intuition of an adversarial model-building problem.
When the data generator acts as leader and discloses the
data transformation, the learner only has to solve a simple
optimization problem in order to minimize the risk on the
transformed data points.

The rest of this paper is organized as follows. Section 2 in-
troduces the problem setting. We formalize the Stackelberg
prediction game, derive an optimization problem to deter-
mine the Stackelberg equilibrium, and show how to employ
kernel functions in Section 3. In Section 4, we present three
instances of the SPG and discuss their relation to existing

prediction models. We report on experiments on email spam
filtering in Section 5; Section 6 concludes.

2. PROBLEM SETTING
We study prediction games between two players: The

learner (v = −1) and an adversary, the data generator
(v = +1). In our running example of email spam filtering,
we study the competition between recipient and senders, not
competition among senders. To this end, v = −1 refers to
the recipient whereas v = +1 models the entirety of all legit-
imate and abusive email senders as a single, amalgamated
player.

In the past, the data generator v = +1 produced a sample
D = {(xi, yi)}ni=1 of n training instances xi ∈ X with corre-
sponding class labels yi ∈ Y = {−1,+1}. These object-class
pairs are drawn according to a training distribution with
density function p(x , y). By contrast, future object-class
pairs, produced by the data generator at application time,
are drawn from some test distribution with density ṗ(x , y)
which may differ from p(x , y).

The task of the learner v = −1 is to select the parameters
w ∈ R

m of a predictive model h(x) = sign fw(x) imple-
mented in terms of a generalized linear decision function
fw : X → R with fw(x) = wTφ(x) and feature mapping
φ : X → R

m. The learner’s theoretical costs at application
time are given by

θ−1(w, ṗ) =
∑
Y

∫
X
c−1(x , y)�−1(fw(x), y)ṗ(x , y)dx ,

where weighting function c−1 : X × Y → R and loss
function �−1 : R × Y → R detail the weighted loss
c−1(x , y)�−1(fw(x), y) that the learner incurs when the pre-
dictive model classifies instance x as h(x) = sign fw(x) while
the true label is y . The positive class- and instance-specific
weighting factors c−1(x , y) with E[c−1(X,Y)] = 1 specify
the importance of minimizing the loss �−1(fw(x), y) for the
corresponding object-class pair (x , y). For instance, in spam
filtering, the correct classification of non-spam messages can
be business-critical for email service providers while failing
to detect spam messages runs up processing and storage
costs, depending on the size of the message.

The data generator v = +1 can modify the data genera-
tion process for future instances. In practice, spam senders
update their campaign templates which are disseminated to
the nodes of botnets. Formally, the data generator trans-
forms the training distribution with density p to the test
distribution with density ṗ. The data generator incurs trans-
formation costs by modifying the data generation process
which is quantified by Ω+1(p, ṗ). This term acts as a regu-
larizer on the transformation and may implicitly constrain
the shift that can be imposed on the distribution, depend-
ing on the nature of the application that is to be modeled.
For instance, the email sender may not be allowed to alter
the training distribution for non-spam messages, or to mod-
ify the nature of the messages by changing the label from
spam to non-spam or vice versa. Additionally, changing the
training distribution for spam messages may run up costs
depending on the extent of distortion inflicted on the infor-
mational payload.

The theoretical costs of the data generator at application
time are the sum of the expected prediction costs and the
transformation costs,

θ+1(w, ṗ) =
∑
Y

∫
X
c+1(x , y)�+1(fw(x), y)ṗ(x , y)dx

+ Ω+1(p, ṗ).

In analogy to the learner’s costs, c+1(x , y)�+1(fw(x), y) quan-
tifies the loss that the data generator incurs when instance
x is labeled as h(x) = sign fw(x) while the true label is y .
The weighting factors c+1(x , y) with E[c+1(X,Y)] = 1 ex-
press the significance of (x , y) from the perspective of the
data generator. In our example scenario, this allows to re-
flect that costs of correctly or incorrectly classified instances
may vary greatly across different physical senders that are
aggregated into the amalgamated player.

Since the theoretical costs of both players depend on the
test distribution, they can, for all practical purposes, not be
calculated. Hence, we focus on a regularized, empirical coun-
terpart of the theoretical costs based on the training sample
D. The empirical counterpart Ω̂+1(D, Ḋ) of the data gener-
ator’s regularizer Ω+1(p, ṗ) penalizes the divergence between
training sampleD = {(xi, yi)}ni=1 and a perturbated training

sample Ḋ = {(ẋi, yi)}ni=1 that would be the outcome of ap-
plying the transformation that translates p into ṗ to sample
D. The learner’s cost function, instead of integrating over
ṗ, sums over the elements of the perturbated training sam-
ple Ḋ. The players’ empirical cost functions can still only
be evaluated after the learner has committed to parameters
w and the data generator to a transformation from training
to test density function, but this transformation need only
be represented in terms of the effects that it will have on
the training sample D. The transformed training sample Ḋ
must not be mistaken for test data; test data will be gen-
erated under ṗ at application time after the players have
committed to their actions.

The empirical costs incurred by the predictive model h
with parameters w and the shift from p to ṗ amount to

θ̂−1(w, Ḋ) =

n∑
i=1

c−1,i�−1(fw(ẋi), yi) + ρ−1Ω̂−1(w), (1)

θ̂+1(w, Ḋ) =

n∑
i=1

c+1,i�+1(fw(ẋi), yi) + ρ+1Ω̂+1(D, Ḋ), (2)

where we have replaced the weighting terms 1
n
cv(ẋi, yi) by

constant cost factors cv,i > 0 with
∑

i cv,i = 1. The learner’s

regularizer Ω̂−1(w) in (1) accounts for the fact that Ḋ does
not constitute the test data itself, but is merely a train-
ing sample transformed to reflect the test distribution and
then used to learn the model parameters w. The trade-
off between the empirical loss and the regularizer is con-
trolled by each player’s regularization parameter ρv > 0 for
v ∈ {−1,+1}.

In our analysis, we estimate the transformation costs by
the average squared l2-distance between xi and ẋi in feature
space,

Ω̂+1(Ḋ,D) =
1

n

n∑
i=1

1

2
‖φ(ẋi)− φ(xi)‖2. (3)

The learner’s regularizer Ω̂−1 penalizes the complexity of the
predictive model h(x) = sign fw(x). For our analysis, we

consider Tikhonov regularization which, for linear decision
functions fw, reduces to the squared l2-norm of w,

Ω̂−1(w) =
1

2
‖w‖2. (4)

Note that either player’s empirical costs θ̂v(w, Ḋ) depend
on both players’ actions. The concept of an optimal choice
of model parameters w regardless of the adversary’s choice
of a data transformation is therefore not well-defined. In
the following section, we will refer to the Stackelberg model
which identifies the concept of an optimal move of the leader
which minimizes θ̂−1 over w under the assumption that the
follower will react by minimizing θ̂+1 over Ḋ given the pa-
rameters w chosen by the leader.

3. STACKELBERG PREDICTION GAME
We model the prediction game as a Stackelberg compe-

tition; we refer to the resulting model as the Stackelberg
prediction game (SPG). A Stackelberg game is one of the
simplest dynamic games: In the first stage, the leader—in
our case, the learner—decides on a predictive model h(x) =
sign fw(x) with parameters w. In the second stage, the data
generator, who plays the part of the follower, observes the
leader’s decision and chooses a transformation that changes
the distribution of past instances into the distribution of fu-
ture instances. In this scenario, the learner has to commit
to a set of parameters unilaterally whereas the data gener-
ator can take the model parameters w into account when
preparing the data transformation.

The optimality of a Stackelberg equilibrium which we will
now introduce rests on the assumption that the follower—
the data generator—will act rationally in the sense of choos-
ing a transformation that minimizes the resulting costs θ̂+1

given the disclosed w. To reach minimal costs given w, the
data generator has to identify a sample Ḋ that constitutes a
global minimum of the cost function θ̂+1(w, Ḋ). There may
be several global minima with identical values of the cost
function; in general, the data generator has to identify any
element Ḋ from the set of optimal responses to w,

Ḋw ={
{(ẋi, yi)}ni=1 : {ẋi}ni=1 ∈ argmin

ẋ ′
1,...,ẋ

′
n∈X

θ̂+1

(
w, {(ẋ ′

i , yi)}ni=1

)}
.

Identifying an element Ḋ ∈ Ḋw amounts to solving a regular
optimization problem because w can be observed before Ḋ
has to be chosen. A Stackelberg equilibrium is now identified
by backward induction. Assuming that the data generator
will decide for any Ḋ ∈ Ḋw, the learner has to choose model
parameters w∗ that minimize the learner’s cost function θ̂−1

for any of the possible reactions Ḋ ∈ Ḋw that are optimal
for the data generator:

w∗ ∈ argmin
w∈Rm

max
Ḋ∈Ḋw

θ̂−1(w, Ḋ). (5)

An action w∗ that minimizes the learner’s costs and a cor-
responding optimal action Ḋ ∈ Ḋw∗ of the data generator
are called a Stackelberg equilibrium. The Stackelberg equi-
librium is a special case of a subgame perfect equilibrium
which is an extension of the Nash equilibrium for games
that are played non-simultaneously.

3.1 Finding a Stackelberg Equilibrium
Equation 5 establishes a hierarchical mathematical pro-

gram—specifically, a bilevel optimization problem—with
upper-level objective θ̂−1 and lower-level objective θ̂+1.

min
w∈Rm

max
∀i : ẋi∈X

θ̂−1(w, {(ẋi, yi)}ni=1) (6)

s.t. {ẋi}ni=1 ∈ argmin
ẋ ′
1,...,ẋ

′
n∈X

θ̂+1(w, {(ẋ ′
i , yi)}ni=1) (7)

Bilevel programs are intrinsically hard to solve. Even the
simplest instance in which all constraints and objectives are
linear is known to be NP-hard [8]. The main difficulties arise
from the constraints ẋ ′

i ∈ X of the lower-level optimization
problem which generally render constraint (7) of the upper-
level optimization problem to be non-differentiable in w,
even if θ̂+1 is continuously differentiable in w and ẋ ′

i for
i = 1, . . . , n.

Numerous approaches that address bilevel programs have
been studied, for instance, based on gradient descent,
penalty function, and trust-region methods; see, for instance,
[2] for a detailed survey. Commonly, these methods reformu-
late the optimization problem into a mathematical program
with equilibrium constraints. In this, the lower-level op-
timization problem is replaced by its Karush-Kuhn-Tucker
(KKT) conditions. The resulting optimization problem with
equilibrium constraints can be solved approximately by re-
laxing the complementary conditions [15]. However these
methods do not necessarily converge to a (local) optimum
and are applicable to small problems only.

That is why we focus on a special case of the above bilevel
program. The following theorem reformulates the lower-
level optimization problem into an unconstrained problem
such that constraint (7) becomes continuously differentiable
in w. This requires the feature space induced by mapping
φ, but not necessarily the input space X , to be unrestricted
and the data generator’s loss function �+1(z, y) to be convex
and continuously differentiable in z ∈ R.

Theorem 1. Let the leader’s cost function θ̂−1 and the
follower’s cost function θ̂+1 be defined as in (1) and (2)

with regularizers Ω̂−1 and Ω̂+1 defined as in (4) and (3),
respectively. Let feature mapping φ : X → R

m be surjec-
tive, let the data generator’s loss function �+1(z, y) be con-
vex and continuously differentiable with respect to z ∈ R for
any fixed y ∈ Y. Now let weight vector w∗ ∈ R

m and factors
τ∗
1 , . . . , τ

∗
n ∈ R be a solution of the optimization problem

min
w,∀i : τi

n∑
i=1

c−1,i�−1

(
fw(xi) + τi‖w‖2, yi

)
+

ρ−1

2
‖w‖2 (8)

s.t. ∀i : 0 = τi +
n

ρ+1
c+1,i�

′
+1

(
fw(xi) + τi‖w‖2, yi

)
.

Then the Stackelberg prediction game in Equation 6 attains
an equilibrium at (w∗, Ḋ∗) with Ḋ∗ = {(ẋ∗

i , yi)}ni=1 and ẋ∗
i ∈

{ẋ ∈ X : φ(ẋ) = φ(xi) + τ∗
i w

∗}.

Proof. Constraint 7 says that {ẋ∗
i }ni=1 has to be a solution

of the restricted optimization problem

min
∀i : ẋi∈X

n∑
i=1

c+1,i�+1(w
Tφ(ẋi), yi)+

ρ+1

n

n∑
i=1

1

2
‖φ(ẋi)−φ(xi)‖2.

As the objective as well as the constraints are entirely de-
fined in terms of ẋ∗

i = φ(ẋ∗
i), this condition is equivalent to

enforcing {ẋ∗
i }ni=1 to be a solution of the unrestricted opti-

mization problem

min
∀i : ẋi∈Rm

n∑
i=1

c+1,i�+1(w
Tẋi, yi)+

ρ+1

n

n∑
i=1

1

2
‖ẋi−φ(xi)‖2. (9)

This solution is uniquely defined for any fixedw as loss func-
tion �+1(z, y) is required to be convex in z, and consequently
in ẋi, and the term ‖ẋi−φ(xi)‖2 is quadratic in ẋi and there-
fore strictly convex for any fixed φ(xi). Given w ∈ R

m and

minimizer ẋ∗
i ∈ R

m, the set Ẋ i
w = {ẋ∗ ∈ X : φ(ẋ∗) = ẋ∗

i }
contains all instances ẋ∗ which correspond to the optimally
transformed instance in feature space ẋ∗

i . Since φ is surjec-
tive, Ẋ i

w is guaranteed to be non-empty, and consequently,
for any solution {ẋ∗

i }ni=1, there exist at least one correspond-
ing set of instances {ẋ∗

i }ni=1. As φ is not required to be a bi-

jective mapping, there may exist multiple instances ẋ ∈ Ẋ i
w

which are optimal in the sense of minimizing the data gen-
erator’s loss. However, since all of these instances share the
same feature representation ẋ∗

i , the inner maximization of
the upper-level optimization problem in (6) vanishes,

min
w∈Rm

max
∀i : ẋi∈Ẋ i

w

θ̂−1(w, {(ẋi, yi)}ni=1) =

min
w∈Rm

n∑
i=1

c−1,i�−1

(
wTẋ∗

i , yi
)
+

ρ−1

2
‖w‖2, (10)

where {x∗
i }ni=1 is the solution of Optimization Problem 9.

Since 9 is convex, this constraint can be replaced by its com-
plementary conditions which are given by∇ẋi θ̂+1(w, Ḋ) = 0
for i = 1, . . . , n where

∇ẋi θ̂+1(w, Ḋ) = c+1,i�
′
+1(w

Tẋ∗
i , yi)w +

ρ+1

n
(ẋi − φ(xi)).

The mapped instance ẋ∗
i that satisfies the i-th complemen-

tary condition is given by

ẋ∗
i = φ(xi) + τiw (11)

with

τi = − n

ρ+1
c+1,i�

′
+1

(
wTẋ∗

i , yi
)
,

= − n

ρ+1
c+1,i�

′
+1

(
wTφ(xi) + τiw

Tw, yi
)
,

= − n

ρ+1
c+1,i�

′
+1

(
fw(xi) + τi‖w‖2, yi

)
. (12)

When replacing ẋ∗
i by (11) in the upper-level Optimization

Problem 10 and enforcing Equation 12, Optimization Prob-
lem 8 follows. Hence, a solution w∗ of (8) with correspond-

ing τ∗
1 , . . . , τ

∗
n is also a solution of (6) with ẋ∗

i ∈ Ẋ i
w∗ = {ẋ ∈

X : φ(ẋ) = φ(xi) + τ∗
i w

∗}.

The objective as well as the constraints of the optimization
problem in Theorem 1 are generally not jointly convex in
w and τ1, . . . , τn. However, under the assumptions of the
following proposition, a locally optimal solution can still be
found efficiently by standard SQP solvers.

Proposition 1. Let loss function �−1(z, y) be twice con-
tinuously differentiable and loss function �+1(z, y) be convex
and thrice continuously differentiable with respect to z ∈ R

for any fixed y ∈ Y. Then, a point satisfying the KKT
conditions of the optimization problem in Equation (8) can
be obtained by sequential quadratic programming (SQP)
methods.

The objective as well as the constraints in (8) are twice
continuously differentiable with respect to w and τi for i =
1, . . . , n. Hence, the corresponding complementary condi-
tions are continuously differentiable which is a sufficient con-
dition to apply SQP methods; this proves Proposition 1.

3.2 Applying Kernels
Theorem 1 states that a Stackelberg equilibrium with pa-

rameter vector w ∈ R
m can be obtained by solving the op-

timization problem in (8) which requires an explicit feature
representation φ(xi) of the training instances. However, in
some applications, such a feature mapping is unwieldy or
even not existing. Instead, one is often equipped with a
kernel function k : X × X → R which measures the sim-
ilarity between two instances. Generally, kernel function
k is assumed to be a positive-semidefinite kernel such that
it can be stated in terms of a scalar product in the cor-
responding reproducing kernel Hilbert space; i.e., ∃φ with
k(x , x ′) = φ(x)Tφ(x ′). Making use of the representer the-
orem [13], we can now express weight vector w as a linear
combination of the mapped training instances; that is,

w =

n∑
i=1

αiφ(xi) (13)

where feature mapping φ is implicitly defined by kernel k.
When substituting w in (8) by (13), the squared norm of
w and decision function fw can be completely expressed in
terms of the kernel,

‖w‖2 =

n∑
j,k=1

αjαkk(xj , xk), (14)

fw(xi) =
n∑

j=1

αjk(xi, xj). (15)

Hence, the optimization problem in (8) can be reformulated
into an optimization problem over τ1, . . . , τn ∈ R and the
dual weights α1, . . . , αn ∈ R without the need of an explicit
feature mapping φ. However, inferring an optimal trans-
formed sample Ḋ∗ still requires the knowledge of an explicit
mapping φ and its inverse φ−1. Of course, this is not a
restriction as we are interested in the predictive model fw
rather than the transformed sample Ḋ∗.

Note that for computational reasons, it may be advisable
to first construct an explicit feature mapping from the ker-
nel matrix and then to train the Stackelberg model in the
primal. For instance, we can employ the kernel PCA map1

φ : x �→ K− 1
2 [k(x , x1), . . . , k(x , xn)]

T , (16)

where K denotes the kernel matrix with Kij = k(xi, xj).
Within our experiments (presented in Chapter 5) where we
use linear kernels, we study all three variants: Computing
the model in input space, computing the kernelized version,
and computing the PCA map-induced variant. Even though
all variants yield the same solution, using an explicit PCA
mapping is generally fastest for reasonable n.

1Matrix K− 1
2 can be computed directly from the eigenvalue

decomposition of the kernel matrix K; in case it is singular

we use the pseudo-inverse of K
1
2 .

4. INSTANCES OF THE SPG
By the choice of �v, distinct instances of the Stackelberg

prediction game (SPG) can be identified which, to some ex-
tent, generalize existing prediction models such as the SVM
for invariances [14] and the SVM with uneven margins [11].

4.1 SPG with Worst-Case Loss
The SPG with worst-case loss is an instance of the Stack-

elberg prediction game that is characterized by an antago-
nicity of the (weighted) empirical costs of learner and data
generator; that is, the data generator employs the loss func-
tion

�wc
+1(z, y) = −�−1(z, y)

and cost factors c+1,i = c−1,i. Loss functions �wc
+1 and �−1

cannot both be convex at the same time—except for an inap-
propriate linear function—and so the requirements of either
Theorem 1 or Proposition 1 are violated. As we cannot apply
Theorem 1, we consider the original optimization problem
(Equations 6-7). We substitute �wc

+1 and c+1,i in the objec-
tive (Equation 2) of the lower-level optimization problem

min
∀i : ẋi∈X

n∑
i=1

c+1,i�
wc
+1 (fw(ẋi), yi) +

ρ+1

n

n∑
i=1

1

2
‖φ(ẋi)− φ(xi)‖2

which decouples into n maximization problems

max
ẋi∈X

c−1,i�−1(fw(ẋi), yi)− ρ+1

n

1

2
‖φ(ẋi)− φ(xi)‖2. (17)

An equivalent formulation of (17) is given by

max
ẋi∈X ′

i

�−1(fw(ẋi), yi) (18)

where X ′
i = {ẋ ∈ X : c−1,i =

ρ′+1

n
1
2
‖φ(ẋ) − φ(xi)‖2} are

feasible sets of transformed instances. The difference be-
tween both formulations is that in (18), regularization pa-
rameter ρ′+1 explicitly restricts the amount of transforma-
tion of each instance xi. As now the inner maximization of
the upper-level optimization problem in (6) can be stated in
terms of the solution of the lower-level optimization prob-
lem, �−1(fw(ẋ∗

i), yi), the entire bilevel optimization problem
reduces to the following constrained minimization problem.

min
w,∀i : ξi

n∑
i=1

c−1,iξi + ρ−1
1

2
‖w‖2 (19)

s.t. ∀i : ξi ≥ 0, ξi ≥ max
ẋi∈X ′

i

�−1(fw(ẋi), yi) (20)

If the lower-level maximization problem (20) has a unique
solution for any fixed w ∈ R

m, then the above optimization
problem can be solved by gradient descent where in each
iteration the maximization problem in (20) has to be solved
for the current iterate wk (see, e.g., [14]). In case the learner
choses the hinge loss,

�h−1(z, y) = max(0, 1− yz), (21)

the SPG with worst-case loss reduces to an instance of the
SVM for invariances [14].

4.2 SPG with Linear Loss
A second instance of the Stackelberg prediction game is

the SPG with linear loss in which the data generator em-
ploys a linear loss function,

�lin+1(z, y) = z,

which penalizes high decision values z independently of the
class. This choice is appropriate, for instance, in email spam
filtering where the data generator is purely interested in the
delivery of an email x which becomes unlikely for large values
of z, independently of the corresponding true class y .

For the linear loss that is continuously differentiable and
convex, the constraints in (8) reduce to

τi = − n

ρ+1
c+1,i (22)

for i = 1, . . . , n. When choosing the hinge loss (21) for
the learner and replacing τi in (8) by (22) we arrive at the
following minimization problem.

min
w,∀i : ξi

n∑
i=1

c−1,iξi + ρ−1
1

2
‖w‖2

s.t. ∀i : ξi ≥ 0, ξi ≥ 1− yi

(
wTφ(xi)− n

ρ+1
c+1,i‖w‖2

)

The latter constraints can be reformulated to

yiw
Tφ(xi) ≥ 1 + yiκi − ξi

which amounts to the constraints of the SVM with uneven
margins [11]. The only syntactic distinction is that κi =
n

ρ+1
c+1,i‖w‖2 is indirectly defined by ρ+1 and c+1,i; how-

ever, for each choice of κi ≥ 0 in the SVM with uneven
margins, there exist appropriate parameters ρ+1 and c+1,i

of an equivalent SPG with linear loss and vice versa.
Consider the special case of equal factors c+1,i = c+1,j ,

and consequently κ = κi = κj , for all i, j = 1, . . . , n. Then
the margin of negative instances becomes 1− κ whereas the
margin of positive instances is 1+κ. In our example of spam
filtering, this goes with the intuition that the margin of spam
instances that vary greatly has to be larger than the margin
of non-spam instances that remain almost unmodified. This
effect is stronger when the data generator’s regularization
parameter ρ+1 is small. By contrast, if ρ+1 goes to infinity,
and consequently κ attains zero, then the SPG with linear
loss reduces to the regular SVM.

4.3 SPG with Logistic Loss
Finally, this section introduces the SPG with logistic loss.

This instantiation meets the preconditions of Theorem 1 and
Proposition 1, and the resulting optimization criterion can
be solved with standard tools. The learner may use any
loss function that is convex and twice continuously differ-
entiable (Equation 23 details the loss function used in our
experiments) while the data generator uses the logistic loss

�log+1(z, y) = log (1 + ez)

which again penalizes large decision values z. The rationale
behind this loss function is that the data generator expe-
riences costs when the learner blocks an event, i.e., pro-
duces a high decision function value for an instance. For
instance, a legitimate sender experiences costs when a le-
gitimate email is erroneously blocked just like an abusive
sender, also amalgamated into the data generator, experi-
ences costs when spam messages are blocked. Cost function
�log+1 approaches zero for small values of the decision func-
tion. Now, the constraints in (8) resolve to gi(w, τi) = 0 for
i = 1, . . . , n with

gi(w, τi) = τi
(
1 + e−fw(xi)−τi‖w‖2

)
+

n

ρ+1
c+1,i.

Functions gi(w, τi) are not jointly convex in w and τi. How-
ever, as they are smooth (i.e., infinitely differentiable) in
both arguments, their roots can be obtained efficiently and,
consequently, the resulting optimization problem

min
w,∀i : τi

n∑
i=1

c−1,i�−1

(
fw(xi) + τi‖w‖2, yi

)
+

ρ−1

2
‖w‖2

s.t. ∀i : 0 = gi(w, τi)

can be solved by standard SQP solvers.

5. EXPERIMENTAL EVALUATION
The goal of this section is to explore the relative strengths

and weaknesses of the discussed instances of Stackelberg pre-
diction games and existing baseline methods in the context
of email spam filtering. We compare a regular support vec-
tor machine (SVM), logistic regression (LogReg), the SVM
for invariances with feature scaling (Invar-SVM, [14]), Nash
logistic regression (Nash, [1]), and the Stackelberg instances
SPG with worst-case loss (SPGwc, cf. Section 4.1), SPG
with linear loss (SPGlin, cf. Section 4.2), and the SPG with
logistic loss (SPGlog, cf. Section 4.3). For all Stackelberg
instances we choose the logistic loss function

�log−1(z, y) = log
(
1 + e−yz

)
(23)

for the learner which is convex and smooth, and conse-
quently satisfies Proposition 1. In the absence of prior knowl-
edge on the instance-specific costs, we set cv,i = 1

n
for all

v ∈ {−1,+1}, i = 1, . . . , n and train all methods in the PCA
map induced feature space. To solve the nonlinear program
of the SPG with logistic loss we use the Ipopt solver [16].

We use four email corpora detailed in Table 1: The first
data set contains emails of an email service provider (ESP)
collected between 2007 and 2010. The second (Mailinglist)
is a collection of emails from publicly available mailing lists
augmented by spam emails from Bruce Guenter’s spam trap
of the same time period. The third corpus (Private) contains
newsletters and spam and non-spam emails of the authors.
The last corpus is the NIST TREC 2007 spam corpus. All
emails are tokenized, converted into binary bag-of-word vec-
tors, and sorted chronologically.

Table 1: Data sets used in the experiments.

data set instances features delivery period
ESP 169,612 541,713 01/06/2007 - 27/04/2010

Mailinglist 128,117 266,378 01/04/1999 - 31/05/2006
Private 108,178 582,100 01/08/2005 - 31/03/2010

TREC 2007 75,496 214,839 04/08/2007 - 07/06/2007

Our evaluation protocol is as follows. We use the 4,000
oldest emails as training portion and set the remaining emails
aside as test instances. We use the F-measure—that is, the
harmonic mean of precision and recall—as evaluation mea-
sure and train all methods 20 times on a stratified subset
of 200 spam and 200 non-spam messages sampled from the
training portion. In order to tune the regularization param-
eters we perform a 5-fold cross validation on the training
sample within each repetition of an experiment and for each
method separately.

In the first experiment, we evaluate all methods into the
future by processing the test set in chronological order. Each
test sample is split into 20 disjoint subsets. We average

Oct07 Jul08 Apr09 Jan10

0.75

0.8

0.85

0.9

0.95

Performance on ESP corpus

F
-m

ea
su

re

Aug01 Jan03 Jun04 Nov05

0.9

0.92

0.94

0.96

0.98

Performance on Mailinglist corpus

F
-m

ea
su

re

Mar06 May07 Aug08 Oct09

0.7

0.75

0.8

0.85

0.9

0.95

Performance on Private corpus

F
-m

ea
su

re

Apr07 May07 Jun07

0.95

0.96

0.97

0.98

0.99

Performance on TREC 2007 corpus

F
-m

ea
su

re

SVM LogReg Invar−SVM Nash SPGwc SPGlin SPGlog

Figure 1: F-measure of predictive models. Error bars indicate standard errors.

the F-measure on each of those subsets over the 20 mod-
els (trained on different samples drawn from the training
portion) for each method and perform a paired t-test.

Figure 1 shows that, for all data sets, the Stackelberg
prediction games with linear loss and with logistic loss out-
perform the regular SVM and logistic regression that do not
explicitly factor the adversary into the optimization crite-
rion. On the ESP corpus, the SPG with linear loss is slightly
better than the SPG with logistic loss whereas for the Mail-
inglist corpus the SPG with logistic loss outperforms the
SPG with linear loss. On the TREC 2007 data set, most of
the methods behave comparably with a slight advantage for
the Nash logistic regression and the SPG instances with lo-
gistic loss and linear loss. The period over which the TREC
2007 data have been collected is very short; therefore we
believe that the training and test instances are governed
by nearly identical distributions. Consequently the game-
theoretic models do not gain a significant advantage over
logistic regression that assumes iid samples. For the other
three data sets, the game-theoretical models outperform the
iid baselines.

Table 2 shows aggregated results over all four data sets.
For each point in each of the diagrams of Figure 1, we con-
duct a pairwise comparison of all methods based on a paired
t-test at a confidence level of α = 0.05. When a difference
is significant, we count this as a win for the method that
achieves a higher F-measure. Each line of Table 2 details
the wins and, set in italics, the losses of one method against
all other methods. The Stackelberg prediction game with

logistic loss has more wins than it has losses against each of
the other methods. The Stackelberg prediction game with
linear loss has more wins than losses against each of the other
methods except for the SPG with logistic loss and the Nash
logistic regression. The ranking continues with the Invar-
SVM, the SPG with worst-case loss, logistic regression, and
the regular SVM which loses more frequently than it wins
against all other methods.

To study the predictive performance as well as running
time behavior with respect to the size of the data set, we
train the baselines and the three SPG instances for a vary-
ing number of training examples. We report on the results
for the representative ESP data set in Figure 2. Except for
SPGwc, the game models significantly outperform the triv-
ial baseline methods SVM and logistic regression, especially
for small corpus sizes. However, this comes at the price of
considerably higher computational cost. For the game mod-
els, the Stackelberg instance SPGlin clearly outperforms all
reference methods with respect to efficiency. Though, the
larger the size of the data set, the stronger the computa-
tional differences, where at the same time the discrepancy
of the predictive performance diminishes.

The data generator’s regularizer that we use in the exper-
iments does not distinguish between modifications of spam
and non-spam messages. In reality, most senders of legiti-
mate messages do not deliberately change their writing be-
havior such as to bypass spam filters, perhaps with the ex-
ception of senders of legitimate newsletters who must be
careful not to trigger filtering mechanisms. In a final exper-

50 100 200 400 800 1600 3200

0.7

0.75

0.8

0.85

0.9

Performance on ESP corpus

number of training emails

F
-m

ea
su

re

50 100 200 400 800 1600 3200

10
−1

10
1

10
3

Execution time on ESP corpus

number of training emails

ti
m

e
in

se
c

SVM LogReg Invar−SVM Nash SPGwc SPGlin SPGlog

Figure 2: Predictive performance (left) and execution time (right) for varying sizes of the training data set.

Table 2: Results of paired t-test over all corpora: Number of trials in which each method (row) has significantly
outperformed each other method (column) vs. number of times it was outperformed.

method vs. method SVM LogReg Invar-SVM Nash SPGwc SPGlin SPGlog

SVM 0:0 6:44 2:64 0:72 8:50 6:54 6:69
LogReg 44:6 0:0 3:41 0:72 0:29 6:48 5:57

Invar-SVM 64:2 41:3 0:0 6:40 39:10 20:23 18:30
Nash 72:0 72:0 40:6 0:0 57:2 33:17 14:16
SPGwc 50:8 29:0 10:39 2:57 0:0 17:46 9:48
SPGlin 54:6 48:6 23:20 17:33 46:17 0:0 10:23
SPGlog 69:6 57:5 30:18 16:14 48:9 23:10 0:0

iment, we want to study whether the Stackelberg model re-
flects this aspect of reality. Table 3 shows the average num-
ber of modifications—i.e., word additions and deletions—
performed by the sender per spam and per non-spam email
depending on the sender’s regularization parameter ρ+1 for
fixed ρ−1.

Table 3: Average number of word additions and
deletions per instance for SPGlog.

ρ+1 non-spam spam
additions deletions additions deletions

4 1.4 1.6 14.6 17.6
16 0.3 0.3 9.9 11.6
64 0.0 0.0 7.1 8.7
256 0.0 0.0 2.4 2.8
1024 0.0 0.0 0.8 0.9

As expected, the number of transformations increases in-
versely proportional to the regularization parameter. Even
for equal cost factors cv,i, non-spam messages are rarely
modified because the interests of sender and recipient are
coherent for legitimate messages.

6. CONCLUSIONS
We model adversarial prediction problems as a game in

which a learner has to commit to a predictive model using
past data whereas the data generator may choose a trans-
formation function after the predictive model has been dis-
closed which then defines the test distribution. This model

reflects applications such as the detection of network attacks
and spam filtering in which an assailant can probe the filter.
The cost functions of learner and data generator are gener-
ally conflicting but are not constrained to be perfectly an-
tagonistic. Playing the Stackelberg equilibrium instead of a
worst-case strategy based on a zero-sum model is advisable
when the data generator can be assumed to behave ratio-
nal in the sense of minimizing a cost function. However, in
contrast to the Nash strategy, the Stackelberg model does
not rely on the existence of a unique equilibrium and the
assumptions that the adversary has no information about
the predictive model and is able to identify and follow the
equilibrial strategy.

We derived a compact optimization problem that deter-
mines the solution of the resulting Stackelberg prediction
game. We showed that the Stackelberg model generalizes
existing prediction models such as SVM with uneven mar-
gins and SVM for invariances. We evaluated spam filters
resulting from a regular SVM, logistic regression, existing
game-theoretical models, and three instances of the Stackel-
berg game on several spam-filtering data sets. The relative
performance of the distinct game-theoretic models varies,
but we observe that when compared to any other model,
the Stackelberg model with logistic loss has more wins than
it has losses against each of the baseline methods.

Acknowledgments
This work was supported by the German Science Foundation
DFG under grant SCHE 540/12-1 and by STRATO AG.

7. REFERENCES
[1] M. Brückner and T. Scheffer. Nash equilibria of static

prediction games. In Advances in Neural Information
Processing Systems. MIT Press, 2009.

[2] B. Colson, P. Marcotte, and G. Savard. An overview
of bilevel optimization. Annals of Operations Research,
153(1):235–256, 2007.

[3] O. Dekel and O. Shamir. Learning to classify with
missing and corrupted features. In Proceedings of the
International Conference on Machine Learning, pages
216–223. ACM, 2008.

[4] O. Dekel, O. Shamir, and L. Xiao. Learning to classify
with missing and corrupted features. Machine
Learning, 81(2):149–178, 2010.

[5] L. E. Ghaoui, G. R. G. Lanckriet, and G. Natsoulis.
Robust classification with interval data. Technical
Report UCB/CSD-03-1279, EECS Department,
University of California, Berkeley, 2003.

[6] A. Globerson and S. T. Roweis. Nightmare at test
time: robust learning by feature deletion. In
Proceedings of the International Conference on
Machine Learning. ACM, 2006.

[7] A. Globerson, C. H. Teo, A. J. Smola, and S. T.
Roweis. Dataset Shift in Machine Learning, chapter
An adversarial view of covariate shift and a minimax
approach, pages 179–198. MIT Press, 2009.

[8] R. Jeroslow. The polynomial hierarchy and a simple
model for competitive analysis. Mathematical
Programming, 32:146–164, 1985.

[9] M. Kantarcioglu, B. Xi, and C. Clifton. Classifier
evaluation and attribute selection against active
adversaries. Data Mining and Knowledge Discovery,
22(1-2):291–335, 2011.

[10] G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya,
and M. I. Jordan. A robust minimax approach to
classification. Journal of Machine Learning Research,
3:555–582, 2002.

[11] Y. Li and J. Shawe-Taylor. The SVM with uneven
margins and chinese document categorization. In
Proceedings of the Pacific Asia Conference on
Language, Information and Computation, pages
216–227, 2003.

[12] W. Liu and S. Chawla. A game theoretical model for
adversarial learning. In ICDM Workshops, pages
25–30. IEEE Computer Society, 2009.

[13] B. Schölkopf, R. Herbrich, and A. J. Smola. A
generalized representer theorem. In COLT:
Proceedings of the Workshop on Computational
Learning Theory, Morgan Kaufmann Publishers, 2001.

[14] C. H. Teo, A. Globerson, S. T. Roweis, and A. J.
Smola. Convex learning with invariances. In Advances
in Neural Information Processing Systems. MIT Press,
2007.

[15] S. Veelken. A New Relaxation Scheme for
Mathematical Programs with Equilibrium Constraints:
Theory an Numerical Experience. PhD thesis,
Technische Universität München, 2009.

[16] A. Wächter and L. T. Biegler. On the implementation
of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical
Programming, 106:25–57, 2006.

