
Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 2

Overview of Query Evaluation


 

Plan:
 

Tree of R.A. ops, with choice of alg
 

for each op.


 

Each operator typically implemented using a `pull’
 interface: when an operator is `pulled’

 
for the next output 

tuples, it `pulls’
 

on its inputs and computes them.


 

Two main issues in query optimization:


 

For a given query, what plans are considered?
•

 

Algorithm to search plan space for cheapest (estimated) plan.


 

How is the cost of a plan estimated?


 

Ideally: Want to find best plan.  Practically: Avoid 
worst plans!



 

We will study the System R approach.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 3

Some Common Techniques


 

Algorithms for evaluating relational operators 
use some simple ideas extensively:


 
Indexing:

 
Can use WHERE conditions to retrieve 

small set of tuples
 

(selections, joins)


 
Iteration:

 
Sometimes, faster to scan all tuples

 
even if 

there is an index. (And sometimes, we can scan the 
data entries in an index instead of the table itself.)



 
Partitioning:

 
By using sorting or hashing, we can 

partition the input tuples
 

and replace an expensive 
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 4

Statistics and Catalogs



 

Need information about the relations and indexes 
involved.  Catalogs

 
typically contain at least:



 

# tuples
 

(NTuples) and # pages (NPages) for each relation.


 

# distinct key values (NKeys) and NPages
 

for each index.


 

Index height, low/high key values (Low/High) for each 
tree index.



 

Catalogs updated periodically.


 

Updating whenever data changes is too expensive; lots of 
approximation anyway, so slight inconsistency ok.



 

More detailed information (e.g., histograms of the 
values in some field) are sometimes stored.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 5

Access Paths


 

An access path
 

is a method of retrieving tuples:


 
File scan, or index

 
that matches

 
a selection (in the query) 



 

A tree index matches
 

(a conjunction of) terms that 
involve only attributes in a prefix

 
of the search key.



 

E.g., Tree index on <a, b, c>  matches the selection
 

a=5 
AND

 

b=3, and a=5 AND

 

b>6, but not
 

b=3.


 

A hash index matches
 

(a conjunction of) terms that 
has a term attribute = value

 
for every attribute in the 

search key of the index.


 

E.g., Hash index on <a, b, c>  matches a=5 AND

 

b=3 AND

 c=5; but it does not match
 

b=3, or
 

a=5 AND

 

b=3, or
 

a>5 
AND

 

b=3 AND

 

c=5.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 6

A Note on Complex Selections



 

Selection conditions are first converted to conjunctive 
normal form (CNF):                     
(day<8/9/94 OR

 
bid=5 OR

 
sid=3 ) AND

 (rname=‘Paul’
 

OR
 

bid=5 OR
 

sid=3) 


 

We only discuss case with no ORs; see text if you are 
curious about the general case.

(day<8/9/94 AND
 

rname=‘Paul’) OR
 

bid=5 OR
 

sid=3



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 7

One Approach to Selections



 

Find the most selective access path, retrieve tuples
 

using 
it, and apply any remaining terms that don’t match

 the index:


 

Most selective access path: An index or file scan that we 
estimate will require the fewest page I/Os.



 

Terms that match this index reduce the number of tuples
 retrieved; other terms are used to discard some retrieved 

tuples, but do not affect number of tuples/pages fetched.


 

Consider day<8/9/94 AND bid=5 AND sid=3.
 

A B+ tree 
index on day can be used; then, bid=5

 
and sid=3 must be 

checked for each retrieved tuple.  Similarly, a hash index on 
<bid, sid> could be used; day<8/9/94

 
must then be checked.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 8

Using an Index for Selections


 

Cost depends on #qualifying tuples, and 
clustering.


 

Cost of finding qualifying data entries (typically small) 
plus cost of retrieving records (could be large w/o 
clustering).



 

In example, assuming uniform distribution of names, 
about 10% of tuples

 
qualify (100 pages, 10000 tuples).  

With a clustered index, cost is little more than 100 I/Os; 
if unclustered, upto

 
10000 I/Os!

SELECT

 

*
FROM

 

Reserves R
WHERE

 

R.rname
 

< ‘C%’



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 9

Projection


 

The expensive part is removing duplicates.


 
SQL systems don’t remove duplicates unless the keyword 
DISTINCT is specified in a query.



 

Sorting Approach:  Sort on <sid, bid> and remove 
duplicates. (Can optimize this by dropping unwanted 
information while sorting.)



 

Hashing Approach: Hash on <sid, bid> to create 
partitions.  Load partitions into memory one at a 
time, build in-memory hash structure, and eliminate 
duplicates.



 

If there is an index with both R.sid
 

and R.bid
 

in the 
search key, may be cheaper to sort data entries!

SELECT

 

DISTINCT
R.sid, R.bid

FROM

 

Reserves R



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 10

Simple Nested Loops Join



 

For each tuple
 

in the outer
 

relation R, we scan the 
entire inner

 
relation S. 



 

Cost:  M +  pR

 

* M * N  =  1000 + 100*1000*500  I/Os.


 

Page-oriented Nested Loops join:  For each page
 

of R, 
get each page

 
of S, and write out matching pairs of 

tuples
 
<r, s>, where r is in R-page and S is in S-

 page.


 

Cost:  M + M*N = 1000 + 1000*500


 

If smaller relation (S) is outer, cost = 500 + 500*1000  

foreach
 

tuple
 

r in R do
foreach

 
tuple

 
s in S do

if ri

 

== sj

 

then add <r, s> to result



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 11

Join: Index Nested Loops



 

If there is an index on the join column of one relation 
(say S), can make it the inner and exploit the index.


 

Cost:  M + ( (M*pR

 

) * cost of finding matching S tuples) 


 

M=#pages of R, pR

 

=# R tuples
 

per page


 

For each R tuple, cost of probing S index is about 1.2 
for hash index, 2-4 for B+ tree.  Cost of then finding S 
tuples

 
(assuming Alt. (2) or (3) for data entries) 

depends on clustering.


 

Clustered index:  1 I/O (typical), unclustered: upto
 

1 I/O 
per matching S tuple.

foreach
 

tuple
 

r in R do
foreach

 
tuple

 
s in S where ri

 

== sj

 

do
add <r, s> to result



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 12

Examples of Index Nested Loops



 

Hash-index (Alt. 2) on sid
 

of Sailors (as inner):


 

Scan Reserves:  1000 page I/Os, 100*1000 tuples.


 

For each Reserves tuple:  1.2 I/Os to get data entry in 
index, plus 1 I/O to get (the exactly one) matching Sailors 
tuple.  Total:  220,000 I/Os.



 

Hash-index (Alt. 2) on sid
 

of Reserves (as inner):


 

Scan Sailors:  500 page I/Os, 80*500 tuples.


 

For each Sailors tuple:  1.2 I/Os to find index page with 
data entries, plus cost of retrieving matching Reserves 
tuples.  Assuming uniform distribution, 2.5 reservations 
per sailor (100,000 / 40,000).  Cost of retrieving them  is 1 or

 2.5 I/Os depending on whether the index is clustered.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 13

Block Nested Loops Join


 

Use one page as an input buffer for scanning the 
inner S, one page as the output buffer, and use all 
remaining pages to hold ``block’’

 
of outer R.



 

For each matching tuple
 

r in R-block, s in S-page, add      
<r, s> to result.  Then read next R-block, scan S, etc.

. . .
. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 14

Examples of Block Nested Loops


 

Cost:  Scan of outer +  #outer blocks * scan of inner


 

#outer blocks =


 

With Reserves (R) as outer, and 100 pages of R:


 

Cost of scanning R is 1000 I/Os;  a total of 10 blocks.


 

Per block of R, we scan Sailors (S);  10*500 I/Os.


 

If space for just 90 pages of R, we would scan S 12 times.


 

With 100-page block of Sailors as outer:


 

Cost of scanning S is 500 I/Os; a total of 5 blocks.


 

Per block of S, we scan Reserves;   5*1000 I/Os.


 

With sequential reads
 

considered, analysis changes:  
may be best to divide buffers evenly between R and S.

 # /of pages of outer blocksize



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 15

Join: Sort-Merge (R     S)



 

Sort R and S on the join column, then scan them to do 
a ``merge’’

 
(on join col.), and output result tuples.



 

Advance scan of R until current R-tuple
 

>= current S tuple, 
then advance scan of S until current S-tuple

 
>= current R 

tuple; do this until current R tuple
 

= current S tuple.


 

At this point, all R tuples
 

with same value in Ri
 

(current R 
group) and all S tuples

 
with same value in Sj

 
(current S 

group) match;  output <r, s> for all pairs of such tuples.


 

Then resume scanning R and S.


 

R is scanned once; each S group is scanned once per 
matching R tuple.  (Multiple scans of an S group are 
likely to find needed pages in buffer.)


i=j



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 16

Example of Sort-Merge Join



 

Cost:  M log M + N log N + (M+N)


 

The cost of scanning, M+N, could be M*N (very unlikely!)


 

With 35, 100 or 300 buffer pages, both Reserves and 
Sailors can be sorted in 2 passes; total join cost: 7500. 

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 17

Highlights of System R Optimizer



 

Impact:


 

Most widely used currently; works well for < 10 joins.


 

Cost estimation:  Approximate art at best.


 

Statistics, maintained in system catalogs, used to estimate 
cost of operations and result sizes.



 

Considers combination of CPU and I/O costs.


 

Plan Space:  Too large, must be pruned.


 

Only the space of left-deep plans is considered.
•

 

Left-deep plans allow output of each operator to be pipelined

 

into 
the next operator without storing it in a temporary relation.



 

Cartesian products avoided.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 18

Cost Estimation



 

For each plan considered, must estimate cost:


 

Must estimate cost
 

of each operation in plan tree.
•

 

Depends on input cardinalities.
•

 

We’ve already discussed how to estimate the cost of 
operations (sequential scan, index scan, joins, etc.)



 

Must also estimate size of result for each operation 
in tree!

•

 

Use information about the input relations.
•

 

For selections and joins, assume independence of 
predicates.



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 19

Size Estimation and Reduction Factors



 

Consider a query block:


 

Maximum # tuples
 

in result is the product of the 
cardinalities of relations in the FROM

 
clause.



 

Reduction factor (RF) associated with each
 

term
 

reflects 
the impact of the term

 
in reducing result size.  Result

 cardinality
 

= Max # tuples
 

*  product of all RF’s.


 

Implicit assumption
 

that terms
 

are independent!


 

Term col=value has RF 1/NKeys(I), given index I on col


 

Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))


 

Term
 

col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT

 

attribute list
FROM

 

relation list
WHERE

 

term1 AND

 

... AND

 

termk



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 20

Schema for Examples



 

Similar to old schema; rname
 

added for variations.


 

Reserves:


 

Each tuple
 

is 40 bytes long,  100 tuples
 

per page, 1000 pages.


 

Sailors:


 

Each tuple
 

is 50 bytes long,  80 tuples
 

per page, 500 pages. 

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 21

Motivating Example



 

Cost:  500+500*1000 I/Os


 

By no means the worst plan! 


 

Misses several opportunities: 
selections could have been 
`pushed’

 
earlier, no use is made 

of any available indexes, etc.


 

Goal of optimization:  To find more 
efficient plans that compute the 
same answer. 

SELECT

 

S.sname
FROM

 

Reserves R, Sailors S
WHERE

 

R.sid=S.sid
 

AND
R.bid=100 AND

 

S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 22

Alternative Plans 1 
(No Indexes)



 

Main difference:  push selects.


 

With 5 buffers, cost of plan:


 

Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, 
uniform distribution).



 

Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).


 

Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)


 

Total:  3560 page I/Os.


 

If we used BNL join,
 

join cost = 10+4*250, total cost = 2770.


 

If we `push’
 

projections, T1 has only sid, T2 only sid
 

and sname:


 

T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100 

sname(On-the-fly)

rating > 5
(Scan;
write to 
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 23

Alternative Plans 2
 With Indexes



 

With clustered index on bid of 
Reserves, we get 100,000/100 =  
1000 tuples

 
on 1000/100 = 10 pages.



 

INL with pipelining
 

(outer is not 
materialized).

v Decision not to push rating>5 before the join is based on 
availability of sid

 
index on Sailors.

v Cost:  Selection of Reserves tuples
 

(10 I/Os); for each, 
must get matching Sailors tuple

 
(1000*1.2); total 1210 I/Os.

v Join column sid
 

is a key for Sailors.
–At most one matching tuple, unclustered

 

index on sid

 

OK.

–Projecting out unnecessary fields from outer doesn’t help.
Reserves

Sailors

sid=sid

bid=100 

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to 
temp)

(Index Nested Loops,
with pipelining )

(On-the-fly)



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 24

Summary


 

There are several alternative evaluation algorithms for each 
relational operator.



 

A query is evaluated by converting it to a tree of operators and
 evaluating the operators in the tree.



 

Must understand query optimization in order to fully 
understand the performance impact of a given database design 
(relations, indexes) on a workload (set of queries).



 

Two parts to optimizing a query:


 

Consider a set of alternative plans.
•

 

Must prune search space; typically, left-deep plans only.


 

Must estimate cost of each plan that is considered.
•

 

Must estimate size of result and cost for each plan node.
•

 

Key issues: Statistics, indexes, operator implementations.


	Overview of Query Evaluation
	Overview of Query Evaluation
	Some Common Techniques
	Statistics and Catalogs
	Access Paths
	A Note on Complex Selections
	One Approach to Selections
	Using an Index for Selections
	Projection
	Simple Nested Loops Join
	Join: Index Nested Loops
	Examples of Index Nested Loops
	Block Nested Loops Join
	Examples of Block Nested Loops
	Join: Sort-Merge (R     S)
	Example of Sort-Merge Join
	Highlights of System R Optimizer
	Cost Estimation
	Size Estimation and Reduction Factors
	Schema for Examples
	Motivating Example
	Alternative Plans 1 �(No Indexes)
	Alternative Plans 2�With Indexes
	Summary

